Visible to Intel only — GUID: aok1683045374547
Ixiasoft
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY Intel FPGA IP
4. Implementing the GTS System PLL Clocks Intel FPGA IP
5. Implementing the GTS Reset Sequencer Intel FPGA IP
6. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY Intel FPGA IP
3.3. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA and FEC Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting reset
3.9. Bonding Implementation
3.10. Configuration Register
3.11. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP for Hardware Testing
3.12. Configurable Quartus® Prime Software Settings
3.13. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. FEC Signals
3.4.5. PCS Direct Signals: IEEE
3.4.6. PCS Direct Signals: IEEE_FLEXE_66/PCS66
3.4.7. Custom Cadence Control and Status Signals
3.4.8. RX PMA Status Signals
3.4.9. TX and RX PMA and Core Interface FIFO Signals
3.4.10. Avalon Memory-Mapped Interface Signals
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Run-time Reset Sequence—TX
3.8.5. Run-time Reset Sequence—RX
3.8.6. Run-time Reset Sequence—TX + RX
3.8.7. Run-time Reset Sequence—TX with FEC
3.8.8. RX Data Loss/CDR Lock Loss (Auto-Recovery)
3.8.9. TX PLL Lock Loss
6.1. Instantiating the GTS PMA/FEC Direct PHY Intel FPGA IP
6.2. Generating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.3. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.6. Hardware Testing the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
Visible to Intel only — GUID: aok1683045374547
Ixiasoft
3.8.7. Run-time Reset Sequence—TX with FEC
Figure 57. Run-time Reset Sequence—TX with FEC
As illustrated in the above figure, the following is the run-time reset sequence for TX with forward error correction (FEC):
- Assert i_tx_reset.
- o_tx_ready deasserts, indicating that the TX datapath is no longer operational.
- o_tx_reset_ack asserts, indicating that the TX datapath is in reset.
- You then deassert i_tx_reset to bring TX out of reset.
- o_tx_am_gen_start asserts, you then send at least two alignment markers on the tx_parallel_data bus.
- Assert i_tx_am_gen_2x_ack, indicating that at least two alignment markers have been sent.
- o_tx_am_gen_start deasserts, you then deassert i_tx_am_gen_2x_ack.
- o_tx_ready asserts.