Visible to Intel only — GUID: yib1716507984316
Ixiasoft
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY Intel FPGA IP
4. Implementing the GTS System PLL Clocks Intel FPGA IP
5. Implementing the GTS Reset Sequencer Intel FPGA IP
6. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY Intel FPGA IP
3.3. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting reset
3.9. Bonding Implementation
3.10. Configuration Register
3.11. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP for Hardware Testing
3.12. Configurable Quartus® Prime Software Settings
3.13. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Common Datapath Options
3.3.3. TX Datapath Options
3.3.4. RX Datapath Options
3.3.5. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.6. FEC Options
3.3.7. PCS Options
3.3.8. Avalon® Memory-Mapped Interface Options
3.3.9. Register Map IP-XACT Support
3.3.10. Analog Parameter Options
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. RX PMA Status Signals
3.4.7. TX and RX PMA and Core Interface FIFO Signals
3.4.8. Avalon Memory-Mapped Interface Signals
6.1. Instantiating the GTS PMA/FEC Direct PHY Intel FPGA IP
6.2. Generating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.3. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.6. Hardware Testing the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
Visible to Intel only — GUID: yib1716507984316
Ixiasoft
2.6.5. Shared Clocking Resources Between the GTS Transceiver Bank and HVIO Bank
Fo a coe GTS tasceive bak, which is located adjacet to the HVIO bak, some clock-to-coe esouces ae shaed.
Fo each tasceive chael, thee ae fou multiplexes that select the clock to be outed to the FPGA coe. Howeve, thee ae moe tha fou possible souces to choose fom both the GTS tasceive chael ad also the HVIO bak, theefoe ot all of them ca be used at the same time.
Figue 35. Shaed Clockig Resouces Betwee the GTS Tasceive Bak ad HVIO Bak
Evey chael i a GTS tasceive bak has a selectio of five output clock optios which ae outed though these fou multiplexes. These five output clocks ae:
- tx_clkout
- tx_clkout2
- x_clkout
- x_clkout2
- Iput efeece clock to coe
I the adjacet HVIO bak, seveal souces ae also outed though these fou multiplexes. They ae:
- PLLREFCLK1
- PLLREFCLK2
- SOURCE_SYNC_CLK1
- SOURCE_SYNC_CLK2
Betwee these HVIO souces, the outig is spead acoss diffeet chaels of the adjacet tasceive bak. The followig table lists which chael of the adjacet tasceive bak the HVIO souces ae shaed with.
HVIO Bak | HVIO Pi | GTS Tasceive Chael Numbe |
---|---|---|
5A | PLLREFCLK1 | 2 |
5A | PLLREFCLK2 | 2 |
5A | SOURCE_SYNC_CLK1 | 0 |
5A | SOURCE_SYNC_CLK2 | 0 |
5B | PLLREFCLK1 | 3 |
5B | PLLREFCLK2 | 3 |
6A | PLLREFCLK1 | 3 |
6A | PLLREFCLK2 | 3 |
6B | SOURCE_SYNC_CLK1 | 0 |
6B | SOURCE_SYNC_CLK2 | 0 |
6B | PLLREFCLK1 | 2 |
6B | PLLREFCLK2 | 2 |
6C | PLLREFCLK1 | 0 |
6C | PLLREFCLK2 | 0 |
6C | SOURCE_SYNC_CLK1 | 2 |
6C | SOURCE_SYNC_CLK2 | 2 |
6D | SOURCE_SYNC_CLK1 | 3 |
6D | SOURCE_SYNC_CLK2 | 3 |
You must esue that the combiatio of output clocks that you use betwee the GTS tasceive bak ad the HVIO bak does ot exceed fou.