Visible to Intel only — GUID: syn1683045362403
Ixiasoft
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY Intel FPGA IP
4. Implementing the GTS System PLL Clocks Intel FPGA IP
5. Implementing the GTS Reset Sequencer Intel FPGA IP
6. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY Intel FPGA IP
3.3. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting reset
3.9. Bonding Implementation
3.10. Configuration Register
3.11. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP for Hardware Testing
3.12. Configurable Quartus® Prime Software Settings
3.13. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Common Datapath Options
3.3.3. TX Datapath Options
3.3.4. RX Datapath Options
3.3.5. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.6. FEC Options
3.3.7. PCS Options
3.3.8. Avalon® Memory-Mapped Interface Options
3.3.9. Register Map IP-XACT Support
3.3.10. Analog Parameter Options
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. RX PMA Status Signals
3.4.7. TX and RX PMA and Core Interface FIFO Signals
3.4.8. Avalon Memory-Mapped Interface Signals
6.1. Instantiating the GTS PMA/FEC Direct PHY Intel FPGA IP
6.2. Generating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.3. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.6. Hardware Testing the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
Visible to Intel only — GUID: syn1683045362403
Ixiasoft
3.8.6. Run-time Reset Sequence—TX + RX
Figue 58. Ru-time Reset Sequece—TX + RX
The figue above illustates the followig u-time TX + RX (Assetig ad Deassetig TX ad RX togethe) eset sequece:
- Asset i_tx_eset ad i_x_eset.
- o_x_eady deassets, idicatig that the RX datapaths ae o loge opeatioal.
- o_x_is_lockedtoef ad o_x_is_lockedtodata deasset.
- o_x_eset_ack assets, idicatig that the RX datapath is fully i eset. o_x_eset_ack stays asseted util i_x_eset deassets.
- o_tx_eady deassets, idicatig that the TX datapaths ae o loge opeatioal.
- o_tx_pll_locked deassets.
- o_tx_eset_ack assets, idicatig that the TX datapath is fully i eset. o_tx_eset_ack stays asseted util i_x_eset deassets.
- You the deasset i_tx_eset ad i_x_eset.
- o_tx_pll_locked assets as the PLL locks to the efeece clock.
- o_tx_eady assets.
- o_x_is_lockedtoef assets as the CDR locks to the efeece clock.
- o_x_is_lockedtodata assets as the CDR locks to the ecoveed data.
- o_x_eady assets.
Note: This wavefom is to illustate the sequece of evets whe you asset ad deasset RX ad TX at the same time. This is the typical flow, but the sequece may vay based o the eset opeatio. o_tx_pll_locked, o_x_is_lockedtoef, ad o_x_is_lockedtodata may have diffeet behavio i simulatio.