Visible to Intel only — GUID: vsd1708643479201
Ixiasoft
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY Intel FPGA IP
4. Implementing the GTS System PLL Clocks Intel FPGA IP
5. Implementing the GTS Reset Sequencer Intel FPGA IP
6. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY Intel FPGA IP
3.3. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting reset
3.9. Bonding Implementation
3.10. Configuration Register
3.11. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP for Hardware Testing
3.12. Configurable Quartus® Prime Software Settings
3.13. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Common Datapath Options
3.3.3. TX Datapath Options
3.3.4. RX Datapath Options
3.3.5. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.6. FEC Options
3.3.7. PCS Options
3.3.8. Avalon® Memory-Mapped Interface Options
3.3.9. Register Map IP-XACT Support
3.3.10. Analog Parameter Options
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. RX PMA Status Signals
3.4.7. TX and RX PMA and Core Interface FIFO Signals
3.4.8. Avalon Memory-Mapped Interface Signals
6.1. Instantiating the GTS PMA/FEC Direct PHY Intel FPGA IP
6.2. Generating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.3. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.6. Hardware Testing the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
Visible to Intel only — GUID: vsd1708643479201
Ixiasoft
3.13.1.1. Direct Register Method Examples
The followig examples demostate the diect egiste method to cofigue the GTS PMA.
TX Equalize Co-efficiets
To set the TX equalize co-efficiets:
- Wite the TX equalize pe_tap_2 egiste (0x9174C[29:27]) with valid value.
- Wite the TX equalize pe_tap_1 egiste (0x91750[9:5]) with valid value.
- Wite the TX equalize mai_tap egiste (0x9174C[13:8]) with valid value.
- Wite the TX equalize post_tap_1 egiste (0x9174C[23:19]) with valid value.
Note: You ca use the TX EQ Equalize Tool to idetify the most optimum value fo the equalize taps fo you lik.
Mute TX Output
To mute TX output (to cofigue TX output to 0 V):
- Set 0x91750[25:24] to 2’b11
- Set 0x91750[25:24] to 2’b00
TX to RX Paallel Loopback
To eable the TX to RX Paallel Loopback:
- Wite 0x1 to 0x916A4[8]
- Wite 0x0 to 0x916A4[8]
Polaity Ivesio
Fo TX polaity ivesio: 40
- Asset TX eset.
- TX polaity ivesio:
- Wite 0x1 to 0x91428[7]
- TX polaity ivesio evet back:
- Wite 0x0 to 0x91428[7]
- Deasset TX eset.
Fo RX polaity ivesio: 40
- Asset RX eset.
- RX polaity ivesio:
- Wite 0x1 to 0x91428[6]
- RX polaity ivesio evet back:
- Wite 0x0 to 0x91428[6]
- Deasset RX eset.
The sequece is valid oly whe you ae usig RX maual tuig (RX adaptatio mode set to maual mode). If you ae usig RX auto adaptatio, use the GTS attibute access method.
40 Featue is pedig hadwae chaacteizatio.