Visible to Intel only — GUID: jmy1708988131862
Ixiasoft
1. GTS Transceiver Overview
2. GTS Transceiver Architecture
3. Implementing the GTS PMA/FEC Direct PHY Intel FPGA IP
4. Implementing the GTS System PLL Clocks Intel FPGA IP
5. Implementing the GTS Reset Sequencer Intel FPGA IP
6. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
7. Design Assistance Tools
8. Debugging GTS Transceiver Links with Transceiver Toolkit
9. Document Revision History for the GTS Transceiver PHY User Guide
3.1. IP Overview
3.2. Designing with the GTS PMA/FEC Direct PHY Intel FPGA IP
3.3. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA, FEC, and PCS Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting reset
3.9. Bonding Implementation
3.10. Configuration Register
3.11. Configuring the GTS PMA/FEC Direct PHY Intel FPGA IP for Hardware Testing
3.12. Configurable Quartus® Prime Software Settings
3.13. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. Preset IP Parameter Settings
3.3.2. Common Datapath Options
3.3.3. TX Datapath Options
3.3.4. RX Datapath Options
3.3.5. PMA Configuration Rules for Specific Protocol Mode Implementations
3.3.6. FEC Options
3.3.7. PCS Options
3.3.8. Avalon® Memory-Mapped Interface Options
3.3.9. Register Map IP-XACT Support
3.3.10. Analog Parameter Options
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. RX PMA Status Signals
3.4.7. TX and RX PMA and Core Interface FIFO Signals
3.4.8. Avalon Memory-Mapped Interface Signals
6.1. Instantiating the GTS PMA/FEC Direct PHY Intel FPGA IP
6.2. Generating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.3. GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Functional Description
6.4. Simulating the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design Testbench
6.5. Compiling the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
6.6. Hardware Testing the GTS PMA/FEC Direct PHY Intel FPGA IP Example Design
Visible to Intel only — GUID: jmy1708988131862
Ixiasoft
3.8.7. RX Data Loss/CDR Lock Loss (Auto-Recovery)
Figue 59. Reset Sequece fo RX Data Loss o CDR Lock Loss
Note: Whe you select DisplayPot fo the PMA cofiguatio ules paamete settig, the RX adaptatio mode is set to ative adaptatio mode by default. I ative adaptatio mode, the CDR auto-ecovey featue is disabled. As a esult, you must moito the o_x_is_lockedtodata sigal status ad eset the RX datapath maually.
The figue above illustates RX auto ecovey featue i the evet of RX data loss o a CDR lock loss:
- o_x_is_lockedtodata deassets, idicatig CDR lost lock of the data.
- o_x_is_lockedtoef deassets, idicatig CDR lost lock of the efeece clock.
- Cosequetly, o_x_eady deassets, idicatig that the datapaths ae o loge opeatioal.
- o_x_eset_ack assets ad the automatically deassets, idicatig that the datapaths ae i eset (auto ecovey).
- o_x_is_lockedtoef assets as the CDR locks to the efeece clock.
- o_x_is_lockedtodata assets as the CDR locks to the ecoveed data.
- o_x_eady assets, idicatig that the RX datapath ae eady fo use.