Visible to Intel only — GUID: jkt1715691752178
Ixiasoft
1. About the External Memory Interfaces Agilex™ 5 FPGA IP
2. Agilex™ 5 FPGA EMIF IP – Introduction
3. Agilex™ 5 FPGA EMIF IP – Product Architecture
4. Agilex™ 5 FPGA EMIF IP – End-User Signals
5. Agilex™ 5 FPGA EMIF IP – Simulating Memory IP
6. Agilex™ 5 FPGA EMIF IP - DDR4 Support
7. Agilex™ 5 FPGA EMIF IP - DDR5 Support
8. Agilex™ 5 FPGA EMIF IP - LPDDR4 Support
9. Agilex™ 5 FPGA EMIF IP - LPDDR5 Support
10. Agilex™ 5 FPGA EMIF IP – Timing Closure
11. Agilex™ 5 FPGA EMIF IP – Controller Optimization
12. Agilex™ 5 FPGA EMIF IP – Debugging
13. Document Revision History for External Memory Interfaces (EMIF) IP User Guide
3.2.1. Agilex™ 5 EMIF Architecture: I/O Subsystem
3.2.2. Agilex™ 5 EMIF Architecture: I/O SSM
3.2.3. Agilex™ 5 EMIF Architecture: HSIO Bank
3.2.4. Agilex™ 5 EMIF Architecture: I/O Lane
3.2.5. Agilex™ 5 EMIF Architecture: Input DQS Clock Tree
3.2.6. Agilex™ 5 EMIF Architecture: PHY Clock Tree
3.2.7. Agilex™ 5 EMIF Architecture: PLL Reference Clock Networks
3.2.8. Agilex™ 5 EMIF Architecture: Clock Phase Alignment
3.2.9. User Clock in Different Core Access Modes
6.2.3.1. Address and Command Pin Placement for DDR4
6.2.3.2. DDR4 Data Width Mapping
6.2.3.3. General Guidelines
6.2.3.4. x4 DIMM Implementation
6.2.3.5. Specific Pin Connection Requirements
6.2.3.6. Command and Address Signals
6.2.3.7. Clock Signals
6.2.3.8. Data, Data Strobes, DM/DBI, and Optional ECC Signals
6.4.3.1. 1 Rank x 8 Discrete (Memory Down) Topology
6.4.3.2. 1 Rank x 16 Discrete (Memory Down) Topology
6.4.3.3. VREF_CA/RESET Signal Routing Guidelines for 1 Rank x 8 and 1 Rank x 16 Discrete (Memory Down) Topology
6.4.3.4. Skew Matching Guidelines for DDR4 (Memory Down) Discrete Configurations
6.4.3.5. Power Delivery Recommendation for DDR4 Discrete Configurations
6.4.3.6. DDR4 Simulation Strategy
12.1. Interface Configuration Performance Issues
12.2. Functional Issue Evaluation
12.3. Timing Issue Characteristics
12.4. Verifying Memory IP Using the Signal Tap Logic Analyzer
12.5. Debugging with the External Memory Interface Debug Toolkit
12.6. Generating Traffic with the Test Engine IP
12.7. Guidelines for Developing HDL for Traffic Generator
12.8. Guidelines for Traffic Generator Status Check
12.9. Hardware Debugging Guidelines
12.10. Create a Simplified Design that Demonstrates the Same Issue
12.11. Measure Power Distribution Network
12.12. Measure Signal Integrity and Setup and Hold Margin
12.13. Vary Voltage
12.14. Operate at a Lower Speed
12.15. Determine Whether the Issue Exists in Previous Versions of Software
12.16. Determine Whether the Issue Exists in the Current Version of Software
12.17. Try A Different PCB
12.18. Try Other Configurations
12.19. Debugging Checklist
12.20. Categorizing Hardware Issues
12.21. Signal Integrity Issues
12.22. Characteristics of Signal Integrity Issues
12.23. Evaluating Signal Integrity Issues
12.24. Skew
12.25. Crosstalk
12.26. Power System
12.27. Clock Signals
12.28. Address and Command Signals
12.29. Read Data Valid Window and Eye Diagram
12.30. Write Data Valid Window and Eye Diagram
12.31. Hardware and Calibration Issues
12.32. Memory Timing Parameter Evaluation
12.33. Verify that the Board Has the Correct Memory Component or DIMM Installed
Visible to Intel only — GUID: jkt1715691752178
Ixiasoft
7.2.5.3. DDR5 Interface x8 Data Lane
A byte lane in an external memory interface consists of 12 signal pins, denoted 0-11.
For DDR5 interfaces composed of ×8 devices, two pins are reserved for DQS-T and DQS-C signals, one pin is reserved for the optional DM signal, one pin must be reserved, and the remaining eight pins are for DQ signals. One-byte data lane must be assigned for each byte lane, where the byte lane covers DQ [0:7], DQS_T/DQS_C and DM_N. The following are EMIF I/O pin swapping restrictions applicable to a DDR5 interface with a ×8 data lane:
- DQS_T must go to pin 4 in IO12 pins.
- DQS_C must go to pin 5 in IO12 pins.
- DM_N must go to pin 6 in IO12 pins. If the interface does not use the DM_N pin, this pin 6 in IO12 lane must remain unconnected.
- Pin 7 in IO12 lane remains unconnected. Altera recommends that you connect this pin 7 to the TDQS dummy load of the memory component and route it as a differential trace along with DM_N (pin 6). This facilitates ×4 or ×8 data interoperability in DIMMs configuration.
- You can connect data byte (DQ [0:7]) to any pins [0,1,2,3,8,9,10,11] in the byte lane. Any permutation within selected pins is permitted.
Pin Index Within Byte Lane | DDR5 x8 Data Lane Function | Swap Consideration |
---|---|---|
0 | DQ Pin | Swap group A |
1 | DQ Pin | Swap group A |
2 | DQ Pin | Swap group A |
3 | DQ Pin | Swap group A |
4 | DQS_T Pin | Fixed location (not swappable) |
5 | DQS_C Pin | Fixed location (not swappable) |
6 | DM Pin | Fixed location (not swappable) |
7 | Unused | Fixed location (not swappable) |
8 | DQ Pin | Swap group A |
9 | DQ Pin | Swap group A |
10 | DQ Pin | Swap group A |
11 | DQ Pin | Swap group A |