Visible to Intel only — GUID: sfo1410068426005
Ixiasoft
1. Intel® Arria® 10 Hard Processor System Technical Reference Manual Revision History
2. Introduction to the Hard Processor System
3. Clock Manager
4. Reset Manager
5. FPGA Manager
6. System Manager
7. SoC Security
8. System Interconnect
9. HPS-FPGA Bridges
10. Cortex*-A9 Microprocessor Unit Subsystem
11. CoreSight* Debug and Trace
12. Error Checking and Correction Controller
13. On-Chip Memory
14. NAND Flash Controller
15. SD/MMC Controller
16. Quad SPI Flash Controller
17. DMA Controller
18. Ethernet Media Access Controller
19. USB 2.0 OTG Controller
20. SPI Controller
21. I2C Controller
22. UART Controller
23. General-Purpose I/O Interface
24. Timer
25. Watchdog Timer
26. Hard Processor System I/O Pin Multiplexing
27. Introduction to the HPS Component
28. Instantiating the HPS Component
29. HPS Component Interfaces
30. Simulating the HPS Component
A. Booting and Configuration
10.3.1. Functional Description
10.3.2. Implementation Details
10.3.3. Cortex*-A9 Processor
10.3.4. Interactive Debugging Features
10.3.5. L1 Caches
10.3.6. Preload Engine
10.3.7. Floating Point Unit
10.3.8. NEON* Multimedia Processing Engine
10.3.9. Memory Management Unit
10.3.10. Performance Monitoring Unit
10.3.11. Arm* Cortex* -A9 MPCore* Timers
10.3.12. Generic Interrupt Controller
10.3.13. Global Timer
10.3.14. Snoop Control Unit
10.3.15. Accelerator Coherency Port
11.1. Features of CoreSight* Debug and Trace
11.2. Arm* CoreSight* Documentation
11.3. CoreSight Debug and Trace Block Diagram and System Integration
11.4. Functional Description of CoreSight Debug and Trace
11.5. CoreSight* Debug and Trace Programming Model
11.6. CoreSight Debug and Trace Address Map and Register Definitions
11.4.1. Debug Access Port
11.4.2. System Trace Macrocell
11.4.3. Trace Funnel
11.4.4. CoreSight Trace Memory Controller
11.4.5. AMBA* Trace Bus Replicator
11.4.6. Trace Port Interface Unit
11.4.7. Embedded Cross Trigger System
11.4.8. Program Trace Macrocell
11.4.9. HPS Debug APB* Interface
11.4.10. FPGA Interface
11.4.11. Debug Clocks
11.4.12. Debug Resets
14.1. NAND Flash Controller Features
14.2. NAND Flash Controller Block Diagram and System Integration
14.3. NAND Flash Controller Signal Descriptions
14.4. Functional Description of the NAND Flash Controller
14.5. NAND Flash Controller Programming Model
14.6. NAND Flash Controller Address Map and Register Definitions
15.1. Features of the SD/MMC Controller
15.2. SD/MMC Controller Block Diagram and System Integration
15.3. SD/MMC Controller Signal Description
15.4. Functional Description of the SD/MMC Controller
15.5. SD/MMC Controller Programming Model
15.6. SD/MMC Controller Address Map and Register Definitions
16.1. Features of the Quad SPI Flash Controller
16.2. Quad SPI Flash Controller Block Diagram and System Integration
16.3. Quad SPI Flash Controller Signal Description
16.4. Functional Description of the Quad SPI Flash Controller
16.5. Quad SPI Flash Controller Programming Model
16.6. Quad SPI Flash Controller Address Map and Register Definitions
16.4.1. Overview
16.4.2. Data Slave Interface
16.4.3. SPI Legacy Mode
16.4.4. Register Slave Interface
16.4.5. Local Memory Buffer
16.4.6. DMA Peripheral Request Controller
16.4.7. Arbitration between Direct/Indirect Access Controller and STIG
16.4.8. Configuring the Flash Device
16.4.9. XIP Mode
16.4.10. Write Protection
16.4.11. Data Slave Sequential Access Detection
16.4.12. Clocks
16.4.13. Resets
16.4.14. Interrupts
18.6.1. System Level EMAC Configuration Registers
18.6.2. EMAC FPGA Interface Initialization
18.6.3. EMAC HPS Interface Initialization
18.6.4. DMA Initialization
18.6.5. EMAC Initialization and Configuration
18.6.6. Performing Normal Receive and Transmit Operation
18.6.7. Stopping and Starting Transmission
18.6.8. Programming Guidelines for Energy Efficient Ethernet
18.6.9. Programming Guidelines for Flexible Pulse-Per-Second (PPS) Output
19.1. Features of the USB OTG Controller
19.2. USB OTG Controller Block Diagram and System Integration
19.3. USB 2.0 ULPI PHY Signal Description
19.4. Functional Description of the USB OTG Controller
19.5. USB OTG Controller Programming Model
19.6. USB 2.0 OTG Controller Address Map and Register Definitions
29.5.1.1. NAND Flash Controller Interface
29.5.1.2. SD/MMC Controller Interface
29.5.1.3. Quad SPI Flash Controller Interface
29.5.1.4. Ethernet Media Access Controller Interface
29.5.1.5. USB 2.0 OTG Controller Interface
29.5.1.6. SPI Controller Interface
29.5.1.7. I2C Controller Interface
29.5.1.8. UART Interface
30.1. Simulation Flows
30.2. Clock and Reset Interfaces
30.3. FPGA-to-HPS AXI Slave Interface
30.4. HPS-to-FPGA AXI Master Interface
30.5. Lightweight HPS-to-FPGA AXI Master Interface
30.6. HPS-to-FPGA MPU Event Interface
30.7. Interrupts Interface
30.8. HPS-to-FPGA Debug APB* Interface
30.9. FPGA-to-HPS System Trace Macrocell Hardware Event Interface
30.10. HPS-to-FPGA Cross-Trigger Interface
30.11. FPGA-to-HPS DMA Handshake Interface
30.12. Boot from FPGA Interface
30.13. Security Manager Anti-Tamper Signals Interface
30.14. EMIF Conduit
30.15. Pin MUX and Peripherals
Visible to Intel only — GUID: sfo1410068426005
Ixiasoft
12.4.4.4.1. Peripheral Slave Interface Tests
Data and ECC overwrite bits in the ECC_accctrl register are provided to test the functionality of the peripheral interface to the ECC-protected RAM.
ECC-Enabled Test
The following sequence can be used to test if the ECC decoder works correctly.- Enable the ECC by setting the ECC_EN bit in the CTRL register.
- Write data to any ECC-protected RAM memory location. This action generates an ECC value that can be read through the ECC_Rdataecc0bus and ECC_Rdataecc1bus registers.
- Read back the memory data. The data read back is expected to match the data originally written (with or without a single-bit error) or generate a double-bit error. Refer to the "Error Logging" section for more details about identifying errors.
ECC-Disabled Test
This sequence can be used to test that the ECC decoder does not produce output when disabled.
- Disable the ECC by clearing the ECC_EN bit in the CTRL register.
- Write to any ECC-protected RAM memory location. No ECC value is expected to be generated and no interrupt or error logging occurs.
- The ECC value can be read through the ECC_Rdataecc0bus and ECC_Rdataecc1bus registers to verify that the ECC values do not correspond to the read memory data.
ECC Disable/Enable Test
This sequence shows that memory data written when the ECC controller is disabled generates an error if the ECC controller is subsequently enabled and the same memory data location is read.
- Disable the ECC by clearing the ECC_EN bit in the CTRL register.
- Write to any ECC-protected RAM memory location. No ECC value is expected to be generated and no interrupt or error logging occurs.
- Enable the ECC by setting the ECC_EN bit in the CTRL register.
- Read the data from ECC-protected RAM memory location you wrote in step 2.
- Expect an error to be generated because the ECC value corresponding to the memory data is not correct. Refer to the "Error Logging" section for more details about identifying errors.