Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 3/22/2024
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

p?syrk

Performs a rank-k update of a symmetric distributed matrix.

Syntax

void pssyrk (const char *uplo , const char *trans , const MKL_INT *n , const MKL_INT *k , const float *alpha , const float *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , const float *beta , float *c , const MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc );

void pdsyrk (const char *uplo , const char *trans , const MKL_INT *n , const MKL_INT *k , const double *alpha , const double *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , const double *beta , double *c , const MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc );

void pcsyrk (const char *uplo , const char *trans , const MKL_INT *n , const MKL_INT *k , const MKL_Complex8 *alpha , const MKL_Complex8 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , const MKL_Complex8 *beta , MKL_Complex8 *c , const MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc );

void pzsyrk (const char *uplo , const char *trans , const MKL_INT *n , const MKL_INT *k , const MKL_Complex16 *alpha , const MKL_Complex16 *a , const MKL_INT *ia , const MKL_INT *ja , const MKL_INT *desca , const MKL_Complex16 *beta , MKL_Complex16 *c , const MKL_INT *ic , const MKL_INT *jc , const MKL_INT *descc );

Include Files

  • mkl_pblas.h

Description

The p?syrk routines perform a distributed matrix-matrix operation defined as

sub(C):=alpha*sub(A)*sub(A)'+ beta*sub(C),

or

sub(C):=alpha*sub(A)'*sub(A)+ beta*sub(C),

where:

alpha and beta are scalars,

sub(C) is an n-by-n symmetric distributed matrix, sub(C)=C(ic:ic+n-1, jc:jc+n-1).

sub(A) is a distributed matrix, sub(A)=A(ia:ia+n-1, ja:ja+k-1), if trans = 'N' or 'n', and sub(A)=A(ia:ia+k-1, ja:ja+n-1) otherwise.

Input Parameters

uplo

(global) Specifies whether the upper or lower triangular part of the symmetric distributed matrix sub(C) is used:

If uplo = 'U' or 'u', then the upper triangular part of the sub(C) is used.

If uplo = 'L' or 'l', then the low triangular part of the sub(C) is used.

trans

(global) Specifies the operation:

if trans = 'N' or 'n', then sub(C) := alpha*sub(A)*sub(A)' + beta*sub(C);

if trans = 'T' or 't', then sub(C) := alpha*sub(A)'*sub(A) + beta*sub(C).

n

(global) Specifies the order of the distributed matrix sub(C), n 0.

k

(global) On entry with trans = 'N' or 'n', k specifies the number of columns of the distributed matrix sub(A) , and on entry with trans = 'T' or 't' , k specifies the number of rows of the distributed matrix sub(A), k 0.

alpha

(global)

Specifies the scalar alpha.

a

(local)

Array, size (lld_a, kla), where kla is LOCq(ja+k-1) when trans = 'N' or 'n', and is LOCq(ja+n-1) otherwise. Before entry with trans = 'N' or 'n', this array contains the local pieces of the distributed matrix sub(A).

ia, ja

(global) The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub(A), respectively.

desca

(global and local) array of dimension 9. The array descriptor of the distributed matrix A.

beta

(global)

Specifies the scalar beta.

c

(local)

Array, size (lld_c, LOCq(jc+n-1)).

Before entry with uplo = 'U' or 'u', this array contains n-by-n upper triangular part of the symmetric distributed matrix sub(C) and its strictly lower triangular part is not referenced.

Before entry with uplo = 'L' or 'l', this array contains n-by-n lower triangular part of the symmetric distributed matrix sub(C) and its strictly upper triangular part is not referenced.

ic, jc

(global) The row and column indices in the distributed matrix C indicating the first row and the first column of the submatrix sub(C), respectively.

descc

(global and local) array of dimension 9. The array descriptor of the distributed matrix C.

Output Parameters

c

With uplo = 'U' or 'u', the upper triangular part of sub(C) is overwritten by the upper triangular part of the updated distributed matrix.

With uplo = 'L' or 'l', the lower triangular part of sub(C) is overwritten by the upper triangular part of the updated distributed matrix.