Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 3/22/2024
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

mkl_?diasm

Solves a system of linear matrix equations for a sparse matrix in the diagonal format with one-based indexing (deprecated).

Syntax

void mkl_sdiasm (const char *transa , const MKL_INT *m , const MKL_INT *n , const float *alpha , const char *matdescra , const float *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const float *b , const MKL_INT *ldb , float *c , const MKL_INT *ldc );

void mkl_ddiasm (const char *transa , const MKL_INT *m , const MKL_INT *n , const double *alpha , const char *matdescra , const double *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const double *b , const MKL_INT *ldb , double *c , const MKL_INT *ldc );

void mkl_cdiasm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8 *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const MKL_Complex8 *b , const MKL_INT *ldb , MKL_Complex8 *c , const MKL_INT *ldc );

void mkl_zdiasm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const MKL_Complex16 *b , const MKL_INT *ldb , MKL_Complex16 *c , const MKL_INT *ldc );

Include Files

  • mkl.h

Description

This routine is deprecated, but no replacement is available yet in the Inspector-Executor Sparse BLAS API interfaces. You can continue using this routine until a replacement is provided and this can be fully removed.

The mkl_?diasm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the diagonal format:

C := alpha*inv(A)*B

or

C := alpha*inv(AT)*B,

where:

alpha is scalar, B and C are dense matrices, A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, AT is the transpose of A.

NOTE:

This routine supports only one-based indexing of the input arrays.

Input Parameters

transa

Specifies the system of linear equations.

If transa = 'N' or 'n', then C := alpha*inv(A)*B,

If transa = 'T' or 't' or 'C' or 'c', then C := alpha*inv(AT)*B.

m

Number of rows of the matrix A.

n

Number of columns of the matrix C.

alpha

Specifies the scalar alpha.

matdescra

Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table “Possible Values of the Parameter matdescra (descra)”. Possible combinations of element values of this parameter are given in Table “Possible Combinations of Element Values of the Parameter matdescra.

val

Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix A. Refer to values array description in Diagonal Storage Scheme for more details.

lval

Leading dimension of val, lvalm. Refer to lval description in Diagonal Storage Scheme for more details.

idiag

Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix A.

NOTE:

All elements of this array must be sorted in increasing order.

Refer to distance array description in Diagonal Storage Scheme for more details.

ndiag

Specifies the number of non-zero diagonals of the matrix A.

b

Array, size ldb* n.

On entry the leading m-by-n part of the array b must contain the matrix B.

ldb

Specifies the leading dimension of b as declared in the calling (sub)program.

ldc

Specifies the leading dimension of c as declared in the calling (sub)program.

Output Parameters

c

Array, size ldc by n.

The leading m-by-n part of the array c contains the matrix C.