Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 3/22/2024
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

mkl_?csrsv

Solves a system of linear equations for a sparse matrix in the CSR format (deprecated).

Syntax

void mkl_scsrsv (const char *transa , const MKL_INT *m , const float *alpha , const char *matdescra , const float *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const float *x , float *y );

void mkl_dcsrsv (const char *transa , const MKL_INT *m , const double *alpha , const char *matdescra , const double *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const double *x , double *y );

void mkl_ccsrsv (const char *transa , const MKL_INT *m , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8 *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const MKL_Complex8 *x , MKL_Complex8 *y );

void mkl_zcsrsv (const char *transa , const MKL_INT *m , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const MKL_Complex16 *x , MKL_Complex16 *y );

Include Files

  • mkl.h

Description

This routine is deprecated. Use mkl_sparse_?_trsvfrom the Intel® oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix in the CSR format:

y := alpha*inv(A)*x

or

y := alpha*inv(AT)*x,

where:

alpha is scalar, x and y are vectors, A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, AT is the transpose of A.

NOTE:

This routine supports a CSR format both with one-based indexing and zero-based indexing.

Input Parameters

transa

Specifies the system of linear equations.

If transa = 'N' or 'n', then y := alpha*inv(A)*x

If transa = 'T' or 't' or 'C' or 'c', then y := alpha*inv(AT)*x,

m

Number of columns of the matrix A.

alpha

Specifies the scalar alpha.

matdescra

Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table “Possible Values of the Parameter matdescra (descra)”. Possible combinations of element values of this parameter are given in Table “Possible Combinations of Element Values of the Parameter matdescra.

val

Array containing non-zero elements of the matrix A.

Its length is pntre[m - 1] - pntrb[0].

Refer to values array description in CSR Format for more details.

NOTE:

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

indx

For one-based indexing, array containing the column indices plus one for each non-zero element of the matrix A. For zero-based indexing, array containing the column indices for each non-zero element of the matrix A.

Its length is equal to length of the val array.

Refer to columns array description in CSR Format for more details.

NOTE:

Column indices must be sorted in increasing order for each row.

pntrb

Array of length m.

This array contains row indices, such that pntrb[i] - pntrb[0] is the first index of row i in the arrays val and indx.

Refer to pointerb array description in CSR Format for more details.

pntre

Array of length m.

This array contains row indices, such that pntre[i] - pntrb[0] - 1 is the last index of row i in the arrays val and indx.

Refer to pointerE array description in CSR Format for more details.

x

Array, size at least m.

On entry, the array x must contain the vector x. The elements are accessed with unit increment.

y

Array, size at least m.

On entry, the array y must contain the vector y. The elements are accessed with unit increment.

Output Parameters

y

Contains solution vector x.