Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 3/22/2024
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

?hfrk

Performs a Hermitian rank-k operation for matrix in RFP format.

Syntax

lapack_int LAPACKE_chfrk( int matrix_layout, char transr, char uplo, char trans, lapack_int n, lapack_int k, float alpha, const lapack_complex_float* a, lapack_int lda, float beta, lapack_complex_float* c );

lapack_int LAPACKE_zhfrk( int matrix_layout, char transr, char uplo, char trans, lapack_int n, lapack_int k, double alpha, const lapack_complex_double* a, lapack_int lda, double beta, lapack_complex_double* c );

Include Files

  • mkl.h

Description

The ?hfrk routines perform a matrix-matrix operation using Hermitian matrices. The operation is defined as

C := alpha*A*AH + beta*C,

or

C := alpha*AH*A + beta*C,

where:

alpha and beta are real scalars,

C is an n-by-n Hermitian matrix in RFP format,

A is an n-by-k matrix in the first case and a k-by-n matrix in the second case.

Input Parameters

matrix_layout

Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major ( LAPACK_COL_MAJOR ).

transr

if transr = 'N' or 'n', the normal form of RFP C is stored;

if transr = 'C' or 'c', the conjugate-transpose form of RFP C is stored.

uplo

Specifies whether the upper or lower triangular part of the array c is used.

If uplo = 'U' or 'u', then the upper triangular part of the array c is used.

If uplo = 'L' or 'l', then the low triangular part of the array c is used.

trans

Specifies the operation:

if trans = 'N' or 'n', then C := alpha*A*AH + beta*C;

if trans = 'C' or 'c', then C := alpha*AH*A + beta*C.

n

Specifies the order of the matrix C. The value of n must be at least zero.

k

On entry with trans = 'N' or 'n', k specifies the number of columns of the matrix a, and on entry with trans = 'T' or 't' or 'C' or 'c', k specifies the number of rows of the matrix a.

The value of k must be at least zero.

alpha

Specifies the scalar alpha.

a

Array, size max(1,lda*ka), where ka is in the following table:

 

Col_major

Row_major

trans = 'N'

k n

trans = 'T'

n k
Before entry with trans = 'N' or 'n', the leading n-by-k part of the array a must contain the matrix A, otherwise the leading k-by-n part of the array a must contain the matrix A.

lda

Specifies the leading dimension of a as declared in the calling (sub)program. lda is defined by the following table:

 

Col_major

Row_major

trans = 'N'

max(1,n) max(1,k)

trans = 'T'

max(1,k) max(1,n)

beta

Specifies the scalar beta.

c

Array, size (n*(n+1)/2 ). Before entry contains the Hermitian matrix C in in RFP format.

Output Parameters

c

If trans = 'N' or 'n', then c contains C := alpha*A*AH + beta*C;

if trans = 'C' or 'c', then c contains C := alpha*AH*A + beta*C ;

Return Values

This function returns a value info.

If info = 0, the execution is successful.

If info < 0, the i-th parameter had an illegal value.

If info = -1011, memory allocation error occurred.