Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 3/22/2024
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

mkl_?csrmultd

Computes product of two sparse matrices stored in the CSR format (3-array variation) with one-based indexing. The result is stored in the dense matrix (deprecated).

Syntax

void mkl_dcsrmultd (const char *trans , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , double *a , MKL_INT *ja , MKL_INT *ia , double *b , MKL_INT *jb , MKL_INT *ib , double *c , MKL_INT *ldc );

void mkl_scsrmultd (const char *trans , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , float *a , MKL_INT *ja , MKL_INT *ia , float *b , MKL_INT *jb , MKL_INT *ib , float *c , MKL_INT *ldc );

void mkl_ccsrmultd (const char *trans , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , MKL_Complex8 *a , MKL_INT *ja , MKL_INT *ia , MKL_Complex8 *b , MKL_INT *jb , MKL_INT *ib , MKL_Complex8 *c , MKL_INT *ldc );

void mkl_zcsrmultd (const char *trans , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , MKL_Complex16 *a , MKL_INT *ja , MKL_INT *ia , MKL_Complex16 *b , MKL_INT *jb , MKL_INT *ib , MKL_Complex16 *c , MKL_INT *ldc );

Include Files

  • mkl.h

Description

This routine is deprecated. Use mkl_sparse_?_spmmdfrom the Intel® oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?csrmultd routine performs a matrix-matrix operation defined as

C := op(A)*B

where:

A, B are the sparse matrices in the CSR format (3-array variation), C is dense matrix;

op(A) is one of op(A) = A, or op(A) =AT, or op(A) = AH .

The routine works correctly if and only if the column indices in sparse matrix representations of matrices A and B are arranged in the increasing order for each row.

NOTE:

This routine supports only one-based indexing of the input arrays.

Input Parameters

trans

Specifies the operation.

If trans = 'N' or 'n', then C := A*B

If trans = 'T' or 't' or 'C' or 'c', then C := AT*B.

m

Number of rows of the matrix A.

n

Number of columns of the matrix A.

k

Number of columns of the matrix B.

a

Array containing non-zero elements of the matrix A. Its length is equal to the number of non-zero elements in the matrix A. Refer to values array description in Sparse Matrix Storage Formats for more details.

ja

Array containing the column indices plus one for each non-zero element of the matrix A. For each row the column indices must be arranged in the increasing order.

The length of this array is equal to the length of the array a. Refer to columns array description in Sparse Matrix Storage Formats for more details.

ia

Array of length m + 1 when trans = 'N' or 'n', or n + 1 otherwise.

This array contains indices of elements in the array a, such that ia[i] - ia[0] is the index in the array a of the first non-zero element from the row i. The value of the last element ia[m] or ia[n] is equal to the number of non-zero elements of the matrix A plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

b

Array containing non-zero elements of the matrix B. Its length is equal to the number of non-zero elements in the matrix B. Refer to values array description in Sparse Matrix Storage Formats for more details.

jb

Array containing the column indices plus one for each non-zero element of the matrix B. For each row the column indices must be arranged in the increasing order.

The length of this array is equal to the length of the array b. Refer to columns array description in Sparse Matrix Storage Formats for more details.

ib

Array of length m + 1.

This array contains indices of elements in the array b, such that ib[i] - ib[0] is the index in the array b of the first non-zero element from the row i. The value of the last element ib[m] is equal to the number of non-zero elements of the matrix B plus one. Refer to rowIndex array description in Sparse Matrix Storage Formats for more details.

Output Parameters

c

Array containing non-zero elements of the result matrix C.

ldc

Specifies the leading dimension of the dense matrix C as declared in the calling (sub)program. Must be at least max(m, 1) when trans = 'N' or 'n', or max(1, n) otherwise.