Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 3/22/2024
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

mkl_?cscsm

Solves a system of linear matrix equations for a sparse matrix in the CSC format (deprecated).

Syntax

void mkl_scscsm (const char *transa , const MKL_INT *m , const MKL_INT *n , const float *alpha , const char *matdescra , const float *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const float *b , const MKL_INT *ldb , float *c , const MKL_INT *ldc );

void mkl_dcscsm (const char *transa , const MKL_INT *m , const MKL_INT *n , const double *alpha , const char *matdescra , const double *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const double *b , const MKL_INT *ldb , double *c , const MKL_INT *ldc );

void mkl_ccscsm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8 *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const MKL_Complex8 *b , const MKL_INT *ldb , MKL_Complex8 *c , const MKL_INT *ldc );

void mkl_zcscsm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT *indx , const MKL_INT *pntrb , const MKL_INT *pntre , const MKL_Complex16 *b , const MKL_INT *ldb , MKL_Complex16 *c , const MKL_INT *ldc );

Include Files

  • mkl.h

Description

This routine is deprecated. Use mkl_sparse_?_trsmfrom the Intel® oneAPI Math Kernel Library (oneMKL) Inspector-executor Sparse BLAS interface instead.

The mkl_?cscsm routine solves a system of linear equations with matrix-matrix operations for a sparse matrix in the CSC format:

C := alpha*inv(A)*B

or

C := alpha*inv(AT)*B,

where:

alpha is scalar, B and C are dense matrices, A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, AT is the transpose of A.

NOTE:

This routine supports a CSC format both with one-based indexing and zero-based indexing.

Input Parameters

transa

Specifies the system of equations.

If transa = 'N' or 'n', then C := alpha*inv(A)*B

If transa = 'T' or 't' or 'C' or 'c', then C := alpha*inv(AT)*B,

m

Number of columns of the matrix A.

n

Number of columns of the matrix C.

alpha

Specifies the scalar alpha.

matdescra

Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table “Possible Values of the Parameter matdescra (descra)”. Possible combinations of element values of this parameter are given in Table “Possible Combinations of Element Values of the Parameter matdescra.

val

Array containing non-zero elements of the matrix A.

For zero-based indexing its length is pntre[m] - pntrb[0].

Refer to values array description in CSC Format for more details.

NOTE:

The non-zero elements of the given row of the matrix must be stored in the same order as they appear in the row (from left to right).

No diagonal element can be omitted from a sparse storage if the solver is called with the non-unit indicator.

indx

For one-based indexing, array containing the row indices plus one for each non-zero element of the matrix A. For zero-based indexing, array containing the row indices for each non-zero element of the matrix A.

Refer to rows array description in CSC Format for more details.

NOTE:

Row indices must be sorted in increasing order for each column.

pntrb

Array of length m.

This array contains column indices, such that pntrb[I] - pntrb[0] is the first index of column I in the arrays val and indx.

Refer to pointerb array description in CSC Format for more details.

pntre

Array of length m.

This array contains column indices, such that pntre[I] - pntrb[1]-1 is the last index of column I in the arrays val and indx.

Refer to pointerE array description in CSC Format for more details.

b

Array, size ldb by n for one-based indexing, and (m, ldb) for zero-based indexing.

On entry the leading m-by-n part of the array b must contain the matrix B.

ldb

Specifies the leading dimension of b for one-based indexing, and the second dimension of b for zero-based indexing, as declared in the calling (sub)program.

ldc

Specifies the leading dimension of c for one-based indexing, and the second dimension of c for zero-based indexing, as declared in the calling (sub)program.

Output Parameters

c

Array, size ldc by n for one-based indexing, and (m, ldc) for zero-based indexing.

The leading m-by-n part of the array c contains the output matrix C.