Visible to Intel only — GUID: fjt1662081538010
Ixiasoft
HSIO Single-Ended I/O Standards Specifications
HSIO Single-Ended SSTL, HSTL, HSUL, POD, and LVSTL I/O Reference Voltage Specifications
HSIO Single-Ended SSTL, HSTL, HSUL, and POD I/O Standards Signal Specifications
HSIO Single-Ended LVSTL I/O Standards Specifications
HSIO Differential SSTL, HSTL, and HSUL I/O Standards Specifications
HSIO Differential POD I/O Standards Specifications
HSIO Differential LVSTL I/O Standards Specifications
HSIO Differential I/O Standards Specifications
MIPI D-PHY I/O Standards Specifications
HPS Clock Performance
HPS Internal Oscillator Frequency
HPS PLL Specifications
HPS Cold Reset
HPS SPI Timing Characteristics
HPS SD/eMMC Timing Characteristics
HPS USB 2.0 Timing Characteristics
HPS USB 3.1 Timing Characteristics
HPS Ethernet Media Access Controller (EMAC) Timing Characteristics
HPS I2C Timing Characteristics
HPS I3C Timing Characteristics
HPS NAND Timing Characteristics
HPS Trace Timing Characteristics
HPS GPIO Interface
HPS JTAG Timing Characteristics
HPS Programmable I/O Timing Characteristics
Visible to Intel only — GUID: fjt1662081538010
Ixiasoft
I/O Timing
I/O timing data is typically used prior to designing the FPGA to get an estimate of the timing budget as part of the timing analysis. You may generate the I/O timing report manually using the Timing Analyzer.
The Intel Quartus® Prime Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.