Visible to Intel only — GUID: kgl1481130436652
Ixiasoft
1. Intel® Agilex™ Hard Processor System Technical Reference Manual Revision History
2. Introduction to the Hard Processor System
3. Cortex-A53 MPCore Processor
4. Cache Coherency Unit
5. System Memory Management Unit
6. System Interconnect
7. Bridges
8. DMA Controller
9. On-Chip RAM
10. Error Checking and Correction Controller
11. Clock Manager
12. System Manager
13. Reset Manager
14. Hard Processor System I/O Pin Multiplexing
15. NAND Flash Controller
16. SD/MMC Controller
17. Ethernet Media Access Controller
18. USB 2.0 OTG Controller
19. SPI Controller
20. I2C Controller
21. UART Controller
22. General-Purpose I/O Interface
23. Timers
24. Watchdog Timers
25. CoreSight Debug and Trace
A. Booting and Configuration
B. Accessing the Secure Device Manager Quad SPI Flash Controller through HPS
2.2.1. HPS Block Diagram
2.2.2. Cortex-A53 MPCore Processor
2.2.3. Cache Coherency Unit
2.2.4. System Memory Management Unit
2.2.5. HPS Interfaces
2.2.6. System Interconnect
2.2.7. On-Chip RAM
2.2.8. Flash Memory Controllers
2.2.9. System Modules
2.2.10. Interface Peripherals
2.2.11. CoreSight* Debug and Trace
2.2.12. Hard Processor System I/O Pin Multiplexing
3.5.1. Exception Levels
3.5.2. Virtualization
3.5.3. Memory Management Unit
3.5.4. Level 1 Caches
3.5.5. Level 2 Memory System
3.5.6. Snoop Control Unit
3.5.7. Cryptographic Extensions
3.5.8. NEON Multimedia Processing Engine
3.5.9. Floating Point Unit
3.5.10. ACE Bus Interface
3.5.11. Abort Handling
3.5.12. Cache Protection
3.5.13. Generic Interrupt Controller
3.5.14. Generic Timers
3.5.15. Debug Modules
3.5.16. Cache Coherency Unit
3.5.17. Clock Sources
5.4.1. Translation Stages
5.4.2. Exception Levels
5.4.3. Translation Regimes
5.4.4. Translation Buffer Unit
5.4.5. Translation Control Unit
5.4.6. Security State Determination
5.4.7. Stream ID
5.4.8. Quality of Service Arbitration
5.4.9. System Memory Management Unit Interrupts
5.4.10. System Memory Management Unit Reset
5.4.11. System Memory Management Unit Clocks
15.1. NAND Flash Controller Features
15.2. NAND Flash Controller Block Diagram and System Integration
15.3. NAND Flash Controller Signal Descriptions
15.4. Functional Description of the NAND Flash Controller
15.5. NAND Flash Controller Programming Model
15.6. NAND Flash Controller Address Map and Register Definitions
15.5.1.1. NAND Flash Controller Optimization Sequence
15.5.1.2. Device Initialization Sequence
15.5.1.3. Device Operation Control
15.5.1.4. ECC Enabling
15.5.1.5. NAND Flash Controller Performance Registers
15.5.1.6. Interrupt and DMA Enabling
15.5.1.7. Timing Registers
15.5.1.8. Registers to Ignore
16.4.2.5.1. Internal DMA Controller Descriptors
16.4.2.5.2. Internal DMA Controller Descriptor Address
16.4.2.5.3. Internal DMA Controller Descriptor Fields
16.4.2.5.4. Host Bus Burst Access
16.4.2.5.5. Host Data Buffer Alignment
16.4.2.5.6. Buffer Size Calculations
16.4.2.5.7. Internal DMA Controller Interrupts
16.4.2.5.8. Internal DMA Controller Functional State Machine†
16.4.3.1.1. Load Command Parameters
16.4.3.1.2. Send Command and Receive Response
16.4.3.1.3. Send Response to BIU
16.4.3.1.4. Driving P-bit to the CMD Pin
16.4.3.1.5. Polling the CCS
16.4.3.1.6. CCS Detection and Interrupt to Host Processor
16.4.3.1.7. CCS Timeout
16.4.3.1.8. Send CCSD Command
16.4.3.1.9. I/O transmission delay (NACIO Timeout)
16.5.1. Software and Hardware Restrictions†
16.5.2. Initialization
16.5.3. Controller/DMA/FIFO Buffer Reset Usage
16.5.4. Non-Data Transfer Commands
16.5.5. Data Transfer Commands
16.5.6. Transfer Stop and Abort Commands
16.5.7. Internal DMA Controller Operations
16.5.8. Commands for SDIO Card Devices
16.5.9. CE-ATA Data Transfer Commands
16.5.10. Card Read Threshold
16.5.11. Interrupt and Error Handling
16.5.12. Booting Operation for eMMC and MMC
16.5.12.1. Boot Operation by Holding Down the CMD Line
16.5.12.2. Boot Operation for eMMC Card Device
16.5.12.3. Boot Operation for Removable MMC4.3, MMC4.4 and MMC4.41 Cards
16.5.12.4. Alternative Boot Operation
16.5.12.5. Alternative Boot Operation for eMMC Card Devices
16.5.12.6. Alternative Boot Operation for MMC4.3 Cards
17.1. Features of the Ethernet MAC
17.2. EMAC Block Diagram and System Integration
17.3. Distributed Virtual Memory Support
17.4. EMAC Controller Signal Description
17.5. EMAC Internal Interfaces
17.6. Functional Description of the EMAC
17.7. Ethernet MAC Programming Model
17.8. Ethernet MAC Address Map and Register Definitions
17.6.1. Transmit and Receive Data FIFO Buffers
17.6.2. DMA Controller
17.6.3. Descriptor Overview
17.6.4. IEEE 1588-2002 Timestamps
17.6.5. IEEE 1588-2008 Advanced Timestamps
17.6.6. IEEE 802.3az Energy Efficient Ethernet
17.6.7. Checksum Offload
17.6.8. Frame Filtering
17.6.9. Clocks and Resets
17.6.10. Interrupts
17.6.8.1.1. Unicast Destination Address Filter
17.6.8.1.2. Multicast Destination Address Filter
17.6.8.1.3. Hash or Perfect Address Filter
17.6.8.1.4. Broadcast Address Filter
17.6.8.1.5. Unicast Source Address Filter
17.6.8.1.6. Inverse Filtering Operation (Invert the Filter Match Result at Final Output)
17.6.8.1.7. Destination and Source Address Filtering Summary
17.7.1. System Level EMAC Configuration Registers
17.7.2. EMAC FPGA Interface Initialization
17.7.3. EMAC HPS Interface Initialization
17.7.4. DMA Initialization
17.7.5. EMAC Initialization and Configuration
17.7.6. Performing Normal Receive and Transmit Operation
17.7.7. Stopping and Starting Transmission
17.7.8. Programming Guidelines for Energy Efficient Ethernet
17.7.9. Programming Guidelines for Flexible Pulse-Per-Second (PPS) Output
18.1. Features of the USB OTG Controller
18.2. Block Diagram and System Integration
18.3. Distributed Virtual Memory Support
18.4. USB 2.0 ULPI PHY Signal Description
18.5. Functional Description of the USB OTG Controller
18.6. USB OTG Controller Programming Model
18.7. USB 2.0 OTG Controller Address Map and Register Definitions
24.4.1. Setting the Timeout Period Values
24.4.2. Selecting the Output Response Mode
24.4.3. Enabling and Initially Starting a Watchdog Timers
24.4.4. Reloading a Watchdog Counter
24.4.5. Pausing a Watchdog Timers
24.4.6. Disabling and Stopping a Watchdog Timers
24.4.7. Watchdog Timers State Machine
25.1. Features of CoreSight Debug and Trace
25.2. ARM® CoreSight Documentation
25.3. CoreSight Debug and Trace Block Diagram
25.4. Functional Description of CoreSight Debug and Trace
25.5. CoreSight Debug and Trace Programming Model
25.6. CoreSight Debug and Trace Address Map and Register Definitions
25.4.1. Debug Access Port
25.4.2. CoreSight SoC-400 Timestamp Generator
25.4.3. System Trace Macrocell
25.4.4. Trace Funnel
25.4.5. CoreSight Trace Memory Controller
25.4.6. AMBA Trace Bus Replicator
25.4.7. Trace Port Interface Unit
25.4.8. NoC Trace Ports
25.4.9. Embedded Cross Trigger System
25.4.10. Embedded Trace Macrocell
25.4.11. HPS Debug APB Interface
25.4.12. FPGA Interface
25.4.13. Debug Clocks
25.4.14. Debug Resets
B.1. Features of the Quad SPI Flash Controller
B.2. Taking Ownership of Quad SPI Controller
B.3. Quad SPI Flash Controller Block Diagram and System Integration
B.4. Quad SPI Flash Controller Signal Description
B.5. Functional Description of the Quad SPI Flash Controller
B.6. Quad SPI Flash Controller Programming Model
B.7. Accessing the SDM Quad SPI Flash Controller Through HPS Address Map and Register Definitions
B.5.1. Overview
B.5.2. Data Slave Interface
B.5.3. SPI Legacy Mode
B.5.4. Register Slave Interface
B.5.5. Local Memory Buffer
B.5.6. Arbitration between Direct/Indirect Access Controller and STIG
B.5.7. Configuring the Flash Device
B.5.8. XIP Mode
B.5.9. Write Protection
B.5.10. Data Slave Sequential Access Detection
B.5.11. Clocks
B.5.12. Resets
B.5.13. Interrupts
Visible to Intel only — GUID: kgl1481130436652
Ixiasoft
19.4.2.3. SPI Interrupts
The SPI controller supports combined interrupt requests, which can be masked. The combined interrupt request is the ORed result of all other SPI interrupts after masking. All SPI interrupts have active‑high polarity level. The SPI interrupts are described as follows: †
- Transmit FIFO Empty Interrupt – Set when the transmit FIFO buffer is equal to or below its threshold value and requires service to prevent an underrun. The threshold value, set through a software‑programmable register, determines the level of transmit FIFO buffer entries at which an interrupt is generated. This interrupt is cleared by hardware when data are written into the transmit FIFO buffer, bringing it over the threshold level. †
- Transmit FIFO Overflow Interrupt – Set when a master attempts to write data into the transmit FIFO buffer after it has been completely filled. When set, new data writes are discarded. This interrupt remains set until you read the transmit FIFO overflow interrupt clear register (TXOICR). †
- Receive FIFO Full Interrupt – Set when the receive FIFO buffer is equal to or above its threshold value plus 1 and requires service to prevent an overflow. The threshold value, set through a software‑programmable register, determines the level of receive FIFO buffer entries at which an interrupt is generated. This interrupt is cleared by hardware when data are read from the receive FIFO buffer, bringing it below the threshold level. †
- Receive FIFO Overflow Interrupt – Set when the receive logic attempts to place data into the receive FIFO buffer after it has been completely filled. When set, newly received data are discarded. This interrupt remains set until you read the receive FIFO overflow interrupt clear register (RXOICR). †
- Receive FIFO Underflow Interrupt – Set when a system bus access attempts to read from the receive FIFO buffer when it is empty. When set, zeros are read back from the receive FIFO buffer. This interrupt remains set until you read the receive FIFO underflow interrupt clear register (RXUICR). †
- Combined Interrupt Request – ORed result of all the above interrupt requests after masking. To mask this interrupt signal, you must mask all other SPI interrupt requests. †
Transmit FIFO Overflow, Transmit FIFO Empty, Receive FIFO Full, Receive FIFO Underflow, and Receive FIFO Overflow interrupts can all be masked independently, using the Interrupt Mask Register (IMR). †