Visible to Intel only — GUID: eiu1614269781266
Ixiasoft
1. F-Tile Overview
2. F-Tile Architecture
3. Implementing the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
4. Implementing the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5. F-Tile PMA/FEC Direct PHY Design Implementation
6. Supported Tools
7. Debugging F-Tile Transceiver Links
8. F-Tile Architecture and PMA and FEC Direct PHY IP User Guide Archives
9. Document Revision History for the F-Tile Architecture and PMA and FEC Direct PHY IP User Guide
A. Appendix
2.1.1. FHT and FGT PMAs
2.1.2. 400G Hard IP and 200G Hard IP
2.1.3. PMA Data Rates
2.1.4. FEC Architecture
2.1.5. PCIe* Hard IP
2.1.6. Bonding Architecture
2.1.7. Deskew Logic
2.1.8. Embedded Multi-die Interconnect Bridge (EMIB)
2.1.9. IEEE 1588 Precision Time Protocol for Ethernet
2.1.10. Clock Networks
2.1.11. Reconfiguration Interfaces
2.2.1. PMA-to-Fracture Mapping
2.2.2. Determining Which PMA to Map to Which Fracture
2.2.3. Hard IP Placement Rules
2.2.4. IEEE 1588 Precision Time Protocol Placement Rules
2.2.5. Topologies
2.2.6. FEC Placement Rules
2.2.7. Clock Rules and Restrictions
2.2.8. Bonding Placement Rules
2.2.9. Preserving Unused PMA Lanes
2.2.2.1. Implementing One 200GbE-4 Interface with 400G Hard IP and FHT
2.2.2.2. Implementing One 200GbE-2 Interface with 400G Hard IP and FHT
2.2.2.3. Implementing One 100GbE-1 Interface with 400G Hard IP and FHT
2.2.2.4. Implementing One 100GbE-4 Interface with 400G Hard IP and FGT
2.2.2.5. Implementing One 10GbE-1 Interface with 200G Hard IP and FGT
2.2.2.6. Implementing Three 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.7. Implementing One 50GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.8. Implementing One 100GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.9. Implementing Two 100GbE-1 and One 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.10. Implementing 100GbE-1, 100GbE-2, and 50GbE-1 Interfaces with 400G Hard IP and FHT
3.1. F-Tile PMA/FEC Direct PHY Intel® FPGA IP Overview
3.2. Designing with F-Tile PMA/FEC Direct PHY Intel® FPGA IP
3.3. Configuring the IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA and FEC Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting Reset
3.9. Bonding Implementation
3.10. Independent Port Configurations
3.11. Configuration Registers
3.12. Configurable Quartus® Prime Software Settings
3.13. Configuring the F-Tile PMA/FEC Direct PHY Intel® FPGA IP for Hardware Testing
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. General and Common Datapath Options
3.3.2. TX Datapath Options
3.3.3. RX Datapath Options
3.3.4. RS-FEC (Reed Solomon Forward Error Correction) Options
3.3.5. Avalon® Memory Mapped Interface Options
3.3.6. Register Map IP-XACT Support
3.3.7. Example Design Generation
3.3.8. Analog Parameter Options
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. RS-FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. TX PMA Control Signals
3.4.7. RX PMA Status Signals
3.4.8. TX and RX PMA and Core Interface FIFO Signals
3.4.9. PMA Avalon® Memory Mapped Interface Signals
3.4.10. Datapath Avalon® Memory Mapped Interface Signals
3.5.1. Parallel Data Mapping Information
3.5.2. TX and RX Parallel Data Mapping Information for Different Configurations
3.5.3. Example of TX Parallel Data for PMA Width = 8, 10, 16, 20, 32 (X=1)
3.5.4. Example of TX Parallel Data for PMA width = 64 (X=2)
3.5.5. Example of TX Parallel Data for PMA width = 64 (X=2) for FEC Direct Mode
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Reset Signals—Descriptions
3.8.5. Status Signals—Descriptions
3.8.6. Run-time Reset Sequence—TX
3.8.7. Run-time Reset Sequence—RX
3.8.8. Run-time Reset Sequence—TX + RX
3.8.9. Run-time Reset Sequence—TX with FEC
4.1. IP Parameters
4.2. IP Port List
4.3. Mode of System PLL - System PLL Reference Clock and Output Frequencies
4.4. Guidelines for F-Tile Reference and System PLL Clocks Intel® FPGA IP Usage
4.5. Guidelines for Refclk #i is Active At and After Device Configuration
4.6. Guidelines for Obtaining the Lock Status and Resetting the FGT and FHT TX PLLs
5.1. Implementing the F-Tile PMA/FEC Direct PHY Design
5.2. Instantiating the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.3. Implementing a RS-FEC Direct Design in the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.4. Instantiating the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5.5. Enabling Custom Cadence Generation Ports and Logic
5.6. Connecting the F-Tile PMA/FEC Direct PHY Design IP
5.7. Simulating the F-Tile PMA/FEC Direct PHY Design
5.8. F-Tile Interface Planning
7.2.1. Modifying the Design to Enable F-Tile Transceiver Debug
7.2.2. Programming the Design into an Intel FPGA
7.2.3. Loading the Design to the Transceiver Toolkit
7.2.4. Creating Transceiver Links
7.2.5. Running BER Tests
7.2.6. Running Eye Viewer Tests
7.2.7. Running Link Optimization Tests
7.2.8. Checking FEC Statistics
7.2.9. Vertical Bathtub Curve Measurements (VBCM) Data
Visible to Intel only — GUID: eiu1614269781266
Ixiasoft
3.8.4. Reset Signals—Descriptions
Name | Width | Domai | Diectio | Type | Desciptio |
---|---|---|---|---|---|
tx_eset | 1 | Asychoous | Iput | N/A | TX eset iput fo TX PMAs ad TX datapath. Must be kept asseted util tx_eset_ack is asseted. Applies to all TX chaels i a F-Tile PMA/FEC Diect PHY Itel® FPGA IP istace. |
tx_eset_ack | 1 | Asychoous | Output | N/A | TX fully i eset idicato. This sigal assets followig tx_eset assetio ad stays asseted fo as log as tx_eset is asseted. This sigal deassets followig tx_eset deassetio ad emais deasseted fo as log as tx_eset is deasseted. |
x_eset | 1 | Asychoous | Iput | N/A | RX eset iput fo RX PMAs ad RX datapath. Must be kept asseted util x_eset_ack is asseted. Applies to all RX chaels i a F-Tile PMA/FEC Diect PHY Itel® FPGA IP istace. |
x_eset_ack | 1 | Asychoous | Output | N/A | RX fully i eset idicato. This sigal assets followig x_eset assetio ad stays asseted fo as log as x_eset is asseted. This sigal deassets followig x_eset deassetio ad emais deasseted fo as log as x_eset is deasseted. |
ecofig_pdp_eset | 1 | Asychoous | Iput | Datapath Avalo® Memoy Mapped Iteface | Recofiguatio Iteface Reset |
ecofig_xcv_eset | 1 | Asychoous | Iput | PMA Avalo® Memoy Mapped Iteface | Active-high sychoous eset. Asset this sigal to eset the PMA ecofiguatio iteface. |
tx_eady | 1 | Asychoous | Output | N/A | Status pot to idicate whe TX PMAs ad TX datapath ae eset successfully ad eady fo data tasfe. |
x_eady | 1 | Asychoous | Output | N/A | Status pot to idicate whe RX PMAs ad RX datapath esets ae completed, the RX CDRs have locked to data ad the ecoveed lie data is eady to be deliveed to the paallel iteface. |
tx_am_ge_stat | 1 | Asychoous | Output | N/A | Whe usig FEC, idicates whe to stat sedig aligmet makes. This cleas afte tx_am_ge_2x_ack is asseted. |
tx_am_ge_2x_ack | 1 | Asychoous | Iput | N/A | Whe usig FEC, you must idicate to the eset sequece at least 2 aligmet makes wee set sice tx_am_ge_stat is asseted. This sigal should be deasseted afte tx_am_ge_stat is deasseted. |