Visible to Intel only — GUID: mtd1706822806378
Ixiasoft
1. F-Tile Overview
2. F-Tile Architecture
3. Implementing the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
4. Implementing the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5. F-Tile PMA/FEC Direct PHY Design Implementation
6. Supported Tools
7. Debugging F-Tile Transceiver Links
8. F-Tile Architecture and PMA and FEC Direct PHY IP User Guide Archives
9. Document Revision History for the F-Tile Architecture and PMA and FEC Direct PHY IP User Guide
A. Appendix
2.1.1. FHT and FGT PMAs
2.1.2. 400G Hard IP and 200G Hard IP
2.1.3. PMA Data Rates
2.1.4. FEC Architecture
2.1.5. PCIe* Hard IP
2.1.6. Bonding Architecture
2.1.7. Deskew Logic
2.1.8. Embedded Multi-die Interconnect Bridge (EMIB)
2.1.9. IEEE 1588 Precision Time Protocol for Ethernet
2.1.10. Clock Networks
2.1.11. Reconfiguration Interfaces
2.2.1. PMA-to-Fracture Mapping
2.2.2. Determining Which PMA to Map to Which Fracture
2.2.3. Hard IP Placement Rules
2.2.4. IEEE 1588 Precision Time Protocol Placement Rules
2.2.5. Topologies
2.2.6. FEC Placement Rules
2.2.7. Clock Rules and Restrictions
2.2.8. Bonding Placement Rules
2.2.9. Preserving Unused PMA Lanes
2.2.2.1. Implementing One 200GbE-4 Interface with 400G Hard IP and FHT
2.2.2.2. Implementing One 200GbE-2 Interface with 400G Hard IP and FHT
2.2.2.3. Implementing One 100GbE-1 Interface with 400G Hard IP and FHT
2.2.2.4. Implementing One 100GbE-4 Interface with 400G Hard IP and FGT
2.2.2.5. Implementing One 10GbE-1 Interface with 200G Hard IP and FGT
2.2.2.6. Implementing Three 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.7. Implementing One 50GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.8. Implementing One 100GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.9. Implementing Two 100GbE-1 and One 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.10. Implementing 100GbE-1, 100GbE-2, and 50GbE-1 Interfaces with 400G Hard IP and FHT
3.1. F-Tile PMA/FEC Direct PHY Intel® FPGA IP Overview
3.2. Designing with F-Tile PMA/FEC Direct PHY Intel® FPGA IP
3.3. Configuring the IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA and FEC Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting Reset
3.9. Bonding Implementation
3.10. Independent Port Configurations
3.11. Configuration Registers
3.12. Configurable Quartus® Prime Software Settings
3.13. Configuring the F-Tile PMA/FEC Direct PHY Intel® FPGA IP for Hardware Testing
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. General and Common Datapath Options
3.3.2. TX Datapath Options
3.3.3. RX Datapath Options
3.3.4. RS-FEC (Reed Solomon Forward Error Correction) Options
3.3.5. Avalon® Memory Mapped Interface Options
3.3.6. Register Map IP-XACT Support
3.3.7. Example Design Generation
3.3.8. Analog Parameter Options
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. RS-FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. TX PMA Control Signals
3.4.7. RX PMA Status Signals
3.4.8. TX and RX PMA and Core Interface FIFO Signals
3.4.9. PMA Avalon® Memory Mapped Interface Signals
3.4.10. Datapath Avalon® Memory Mapped Interface Signals
3.5.1. Parallel Data Mapping Information
3.5.2. TX and RX Parallel Data Mapping Information for Different Configurations
3.5.3. Example of TX Parallel Data for PMA Width = 8, 10, 16, 20, 32 (X=1)
3.5.4. Example of TX Parallel Data for PMA width = 64 (X=2)
3.5.5. Example of TX Parallel Data for PMA width = 64 (X=2) for FEC Direct Mode
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Reset Signals—Descriptions
3.8.5. Status Signals—Descriptions
3.8.6. Run-time Reset Sequence—TX
3.8.7. Run-time Reset Sequence—RX
3.8.8. Run-time Reset Sequence—TX + RX
3.8.9. Run-time Reset Sequence—TX with FEC
4.1. IP Parameters
4.2. IP Port List
4.3. Mode of System PLL - System PLL Reference Clock and Output Frequencies
4.4. Guidelines for F-Tile Reference and System PLL Clocks Intel® FPGA IP Usage
4.5. Guidelines for Refclk #i is Active At and After Device Configuration
4.6. Guidelines for Obtaining the Lock Status and Resetting the FGT and FHT TX PLLs
5.1. Implementing the F-Tile PMA/FEC Direct PHY Design
5.2. Instantiating the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.3. Implementing a RS-FEC Direct Design in the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.4. Instantiating the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5.5. Enabling Custom Cadence Generation Ports and Logic
5.6. Connecting the F-Tile PMA/FEC Direct PHY Design IP
5.7. Simulating the F-Tile PMA/FEC Direct PHY Design
5.8. F-Tile Interface Planning
7.2.1. Modifying the Design to Enable F-Tile Transceiver Debug
7.2.2. Programming the Design into an Intel FPGA
7.2.3. Loading the Design to the Transceiver Toolkit
7.2.4. Creating Transceiver Links
7.2.5. Running BER Tests
7.2.6. Running Eye Viewer Tests
7.2.7. Running Link Optimization Tests
7.2.8. Checking FEC Statistics
7.2.9. Vertical Bathtub Curve Measurements (VBCM) Data
Visible to Intel only — GUID: mtd1706822806378
Ixiasoft
3.3.1.2. FGT PMA Configuration Rules for GPON Mode
You ca implemet the upsteam GPON, XG(S)PON, 25G PON, ad 50G asymmetic PON potocols with the F-Tile PMA/FEC Diect PHY Itel® FPGA IP by usig the settigs show below:
- Set the FGT PMA cofiguatio ules paamete to GPON.
- Set the Adaptatio mode paamete to maual.
- Eable the fgt_x_cd_fast_feeze_sel pot.
- Eable the fgt_x_cd_feeze pot.
To achieve the best FGT RX pefomace whe eceivig the bust mode taffic, you must adhee to the followig guidelies:
- You must make sue that addesses 0x62000[16] ad 0x62004[12] ae set to 1’b1.
Note: 0x62000 ad 0x62004 ae the offset addesses fo lae 0.
- You must tie the fgt_x_cd_fast_feeze_sel sigal to 1’b0.
- You must asset the fgt_x_cd_feeze sigal whe the bust disappeas ad deasset fgt_x_cd_feeze whe the bust appeas. Fo the timig elatioship betwee the fgt_x_cd_feeze sigal ad busts, efe to the followig coditios:
- The tasceive iput sigal fgt_x_cd_feeze popagates to *igess*231* with a latecy about 10 s.
- *igess*231* is the iteal sigal that cotols the CDR feeze o ufeeze logic.
- It is ecommeded that you alig *igess*231* sigal assetio ad deassetio with the x_seial_data disappeaig ad eappeaig.
- You ca captue the *igess*231* sigal usig Sigal Tap via the path *__tiles|z*_x*_y*_*__eset_cotolle|x_f_tile_soft_eset_ctl_sip_v1|x_ftile_eset|st_ctl|iflux_igess_diect_231
Sigal Coditio | Ealy | Late |
---|---|---|
Assetio of *igess*231* | The CDR may ot tack the tail of the pio data esultig i highe BER. | The CDR ca dift i fequecy esultig i a loge lock time o the ext bust. |
Deassetio of *igess*231* | The CDR ca dift i fequecy esultig i a loge lock time o the ext bust. | The stat of the peamble ca be missed esultig i a loge lock time o the cuet bust. |
Note: It is acceptable if you caot pefectly alig the *igess*231* sigal with the x_seial_data. The FGT RX CDR ca lock to the icomig bust fast eough withi the peamble duatio to meet the PON-elated specificatios.
- Duig the idle time (o active bust), the diffeetial voltage at the FGT RX should be 0 istead of a egative value. This is to esue the AC couplig capacito ca quickly chage up to a stable value whe the bust aives.
- If a optical lie temial (OLT) optical module is coected to FGT RX, the eable squelch should meet the 0 diffeetial voltage equiemet.
- If the FGT TX is coected to FGT RX, the eable TX electical idle to meet the 0 diffeetial voltage equiemet. Fo PON applicatios with 32-bit PMA width:
- To eable TX electical idle: set the tx_paallel_data bit[35] ad bit[75] to 1’b1
- To disable TX electical idle: set the tx_paallel_data bit[35] ad bit[75] to 1’b0
- You must maually tue the RX EQ paametes: VGA gai, high fequecy boost ad DFE data tap 1.
Note: Whe the othe paametes ae fixed, a smalle RX iput voltage swig equies a smalle VGA gai value. A lage RX iput voltage swig equies a lage VGA gai value.
- You may eed to maually tue the CDR gai paametes: popotioal gai ad itegal gai, if the tued RX EQ paametes caot achieve the pefomace you equie.
- Whe the fgt_x_cd_feeze sigal assets, the itegal path is foze while the popotioal path is still active.
- Highe gai value fo the popotioal path ad itegal path helps the RX CDR to ealig to the icomig data phase quicke but ca ceate a highe jitte i the pocess.
- Whe the fgt_x_cd_feeze sigal assets, a highe gai value fo the popotioal path may speed up the diftig pocess ad cause the CDR to be fa away fom the taget phase aligmet.
- Popotioal gai egiste is: 0x4157C[24:20].
Note: This is the offset addess fo lae 0.
- Itegal gai egistes ae: 0x4158C[17:13], 0x41484[14:10], 0x41484[24:20], 0x41488[4:0], 0x41488[14:10], 0x41488[24:20], 0x4148C[4:0], 0x4148C[14:10]
Note: These ae the offset addesses fo lae 0.
- A example of optimal settigs fo the CDR gai egistes ae:
- Popotioal gai value: 0xA
- Itegal gai value: 0xC
- Set the Eable fgt_x_cd_set_locktoef pot paamete to O.
- Set the CDR lock mode paamete to auto.
- Set egistes 0x41678[27:26] ad 0x41678[29:28] to 2'b11, othewise, the LTR/LTD switchig may fail.
- Set egistes 0x41580[30] ad 0x41580[31] to 1'b1, othewise, duig LTR mode, the x_paallel_data may be ivalid.