Visible to Intel only — GUID: pgt1628275887956
Ixiasoft
1. F-Tile Overview
2. F-Tile Architecture
3. Implementing the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
4. Implementing the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5. F-Tile PMA/FEC Direct PHY Design Implementation
6. Supported Tools
7. Debugging F-Tile Transceiver Links
8. F-Tile Architecture and PMA and FEC Direct PHY IP User Guide Archives
9. Document Revision History for the F-Tile Architecture and PMA and FEC Direct PHY IP User Guide
A. Appendix
2.1.1. FHT and FGT PMAs
2.1.2. 400G Hard IP and 200G Hard IP
2.1.3. PMA Data Rates
2.1.4. FEC Architecture
2.1.5. PCIe* Hard IP
2.1.6. Bonding Architecture
2.1.7. Deskew Logic
2.1.8. Embedded Multi-die Interconnect Bridge (EMIB)
2.1.9. IEEE 1588 Precision Time Protocol for Ethernet
2.1.10. Clock Networks
2.1.11. Reconfiguration Interfaces
2.2.1. PMA-to-Fracture Mapping
2.2.2. Determining Which PMA to Map to Which Fracture
2.2.3. Hard IP Placement Rules
2.2.4. IEEE 1588 Precision Time Protocol Placement Rules
2.2.5. Topologies
2.2.6. FEC Placement Rules
2.2.7. Clock Rules and Restrictions
2.2.8. Bonding Placement Rules
2.2.9. Preserving Unused PMA Lanes
2.2.2.1. Implementing One 200GbE-4 Interface with 400G Hard IP and FHT
2.2.2.2. Implementing One 200GbE-2 Interface with 400G Hard IP and FHT
2.2.2.3. Implementing One 100GbE-1 Interface with 400G Hard IP and FHT
2.2.2.4. Implementing One 100GbE-4 Interface with 400G Hard IP and FGT
2.2.2.5. Implementing One 10GbE-1 Interface with 200G Hard IP and FGT
2.2.2.6. Implementing Three 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.7. Implementing One 50GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.8. Implementing One 100GbE-1 and Two 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.9. Implementing Two 100GbE-1 and One 25GbE-1 Interfaces with 400G Hard IP and FHT
2.2.2.10. Implementing 100GbE-1, 100GbE-2, and 50GbE-1 Interfaces with 400G Hard IP and FHT
3.1. F-Tile PMA/FEC Direct PHY Intel® FPGA IP Overview
3.2. Designing with F-Tile PMA/FEC Direct PHY Intel® FPGA IP
3.3. Configuring the IP
3.4. Signal and Port Reference
3.5. Bit Mapping for PMA and FEC Mode PHY TX and RX Datapath
3.6. Clocking
3.7. Custom Cadence Generation Ports and Logic
3.8. Asserting Reset
3.9. Bonding Implementation
3.10. Independent Port Configurations
3.11. Configuration Registers
3.12. Configurable Quartus® Prime Software Settings
3.13. Configuring the F-Tile PMA/FEC Direct PHY Intel® FPGA IP for Hardware Testing
3.14. Hardware Configuration Using the Avalon® Memory-Mapped Interface
3.3.1. General and Common Datapath Options
3.3.2. TX Datapath Options
3.3.3. RX Datapath Options
3.3.4. RS-FEC (Reed Solomon Forward Error Correction) Options
3.3.5. Avalon® Memory Mapped Interface Options
3.3.6. Register Map IP-XACT Support
3.3.7. Example Design Generation
3.3.8. Analog Parameter Options
3.4.1. TX and RX Parallel and Serial Interface Signals
3.4.2. TX and RX Reference Clock and Clock Output Interface Signals
3.4.3. Reset Signals
3.4.4. RS-FEC Signals
3.4.5. Custom Cadence Control and Status Signals
3.4.6. TX PMA Control Signals
3.4.7. RX PMA Status Signals
3.4.8. TX and RX PMA and Core Interface FIFO Signals
3.4.9. PMA Avalon® Memory Mapped Interface Signals
3.4.10. Datapath Avalon® Memory Mapped Interface Signals
3.5.1. Parallel Data Mapping Information
3.5.2. TX and RX Parallel Data Mapping Information for Different Configurations
3.5.3. Example of TX Parallel Data for PMA Width = 8, 10, 16, 20, 32 (X=1)
3.5.4. Example of TX Parallel Data for PMA width = 64 (X=2)
3.5.5. Example of TX Parallel Data for PMA width = 64 (X=2) for FEC Direct Mode
3.8.1. Reset Signal Requirements
3.8.2. Power On Reset Requirements
3.8.3. Reset Signals—Block Level
3.8.4. Reset Signals—Descriptions
3.8.5. Status Signals—Descriptions
3.8.6. Run-time Reset Sequence—TX
3.8.7. Run-time Reset Sequence—RX
3.8.8. Run-time Reset Sequence—TX + RX
3.8.9. Run-time Reset Sequence—TX with FEC
4.1. IP Parameters
4.2. IP Port List
4.3. Mode of System PLL - System PLL Reference Clock and Output Frequencies
4.4. Guidelines for F-Tile Reference and System PLL Clocks Intel® FPGA IP Usage
4.5. Guidelines for Refclk #i is Active At and After Device Configuration
4.6. Guidelines for Obtaining the Lock Status and Resetting the FGT and FHT TX PLLs
5.1. Implementing the F-Tile PMA/FEC Direct PHY Design
5.2. Instantiating the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.3. Implementing a RS-FEC Direct Design in the F-Tile PMA/FEC Direct PHY Intel® FPGA IP
5.4. Instantiating the F-Tile Reference and System PLL Clocks Intel® FPGA IP
5.5. Enabling Custom Cadence Generation Ports and Logic
5.6. Connecting the F-Tile PMA/FEC Direct PHY Design IP
5.7. Simulating the F-Tile PMA/FEC Direct PHY Design
5.8. F-Tile Interface Planning
7.2.1. Modifying the Design to Enable F-Tile Transceiver Debug
7.2.2. Programming the Design into an Intel FPGA
7.2.3. Loading the Design to the Transceiver Toolkit
7.2.4. Creating Transceiver Links
7.2.5. Running BER Tests
7.2.6. Running Eye Viewer Tests
7.2.7. Running Link Optimization Tests
7.2.8. Checking FEC Statistics
7.2.9. Vertical Bathtub Curve Measurements (VBCM) Data
Visible to Intel only — GUID: pgt1628275887956
Ixiasoft
3.14.2.2.2. FGT Attribute Access Method Example 2
The followig example demostates the steps to eable the FGT PMA PRBS checke ad geeato fo logical lae 0, whe you cofigue the FGT PMA i iteal seial loopback mode i physical lae 0 of a quad, usig the FGT attibute access method.
- Asset RX eset.
- Wait fo RX eset ACK.
- Eable seial loopback:
- Wite 0x6A040 to addess 0x9003C.
- Poll addess 0x90040 util bit 14 = 0 ad bit 15 = 1.
- Wite 0x62040 to addess 0x9003C.
- Poll addess 0x90040 util bit 14 = 0 ad bit 15 = 0.
- Deasset RX eset.
- Wait fo RX eset ACK deasset.
- Cofim the chael is i seial loopback:
- Poll egiste 0x4781C; bit 1 should be high if seial loopback is eabled.
- Check the FGT PMA’s status:
- Wite 0x800D to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 1; bit 16 should also be high if the chael is located i physical local 0.
Note:
bit 16, x_eady is fo physical local lae 0
bit 17, x_eady is fo physical local lae 1
bit 18, x_eady is fo physical local lae 2
bit 19, x_eady is fo physical local lae 3
- Wite 0x000D to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
- Set the PRBS31 patte fo both the TX ad RX PMAs:
- Wite 0x30CA041 to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 1.
- Wite 0x30C2041 to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
- Set up the PMA to cout the umbe of bit eos:
- Wite 0x14A045 to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 1.
- Wite 0x142045 to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
- Stat the test:
- Wite 0x20A00F to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 1.
- Wite 0x20200F to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
- Check that the test is uig:
- Wite 0x8049 to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 1; bits 25:24 should be 0x1 to idicate the test is uig. 42
- Wite 0x0049 to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
- Set up the PRBS geeato to iject eos:
- Wite 0x123A042 to addess 0x9003C to iject 0x123 eos.
- Poll addess 0x90040 util bit 15 = 1.
- Wite 0x1232042 to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
- Tell the PRBS geeato to iject eos:
- Wite 0x23A00F to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 1.
- Wite 0x23200F to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
- Stop the BER test:
- Wite 0x21A00F to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 1.
- Wite 0x21200F to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
- Check the test completed successfully:
- Wite 0x8049 to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 1; bits 25:24 should be 0x3.42
- Wite 0x0049 to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
- Read out the 12 LSB of the eo cout:
- Wite 0x804A to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 1; bits 27:16 epeset the 12 LSBs of the eo cout.
- Wite 0x004A to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
- Read out bits 27:12 of the eo cout:
- Wite 0x804B to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 1; bits 31:16 epeset bits 27:12 of the eo cout.
- Wite 0x004B to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
- Read out bits 31:28 of the eo cout:
- Wite 0x804C to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 1; bits 19:16 epeset bits 31:28 of the eo cout.
- Wite 0x004C to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
- Fiish checkig the PRBS ad BER test:
- Wite 0xA041 to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 1.
- Wite 0x2041 to addess 0x9003C.
- Poll addess 0x90040 util bit 15 = 0.
42
Note: 0x90040[25:24] status values:
- 0x0: Idle
- 0x1: Test uig
- 0x2: Test stopped-executio failue
- 0x3: Test stopped-executio completed successfully