Visible to Intel only — GUID: mcn1444885033346
Ixiasoft
1. Stratix® 10 Clocking and PLL Overview
2. Stratix® 10 Clocking and PLL Architecture and Features
3. Stratix® 10 Clocking and PLL Design Considerations
4. Stratix® 10 Clocking and PLL Implementation Guides
5. Clock Control Intel® FPGA IP Core References
6. IOPLL Intel® FPGA IP Core References
7. IOPLL Reconfig Intel® FPGA IP Core References
8. Stratix® 10 Clocking and PLL User Guide Archives
9. Document Revision History for the Stratix® 10 Clocking and PLL User Guide
2.2.1. PLL Features
2.2.2. PLL Usage
2.2.3. PLL Architecture
2.2.4. PLL Control Signals
2.2.5. Clock Feedback Modes
2.2.6. Clock Multiplication and Division
2.2.7. Programmable Phase Shift
2.2.8. Programmable Duty Cycle
2.2.9. PLL Cascading
2.2.10. Clock Switchover
2.2.11. PLL Reconfiguration and Dynamic Phase Shift
2.2.12. PLL Calibration
4.3.4.1. Design Example 1: .mif Streaming Reconfiguration Using IOPLL Reconfig IP Core
4.3.4.2. Design Example 2: Advanced Mode Reconfiguration Using IOPLL Reconfig IP Core
4.3.4.3. Design Example 3: Clock Gating Reconfiguration Using IOPLL Reconfig IP Core
4.3.4.4. Design Example 4: Dynamic Phase Shift Using IOPLL Reconfig IP Core
Visible to Intel only — GUID: mcn1444885033346
Ixiasoft
2.2.2. PLL Usage
fPLLs are optimized for use as transceiver transmit PLLs and for synthesizing reference clock frequencies. You can use the fPLLs to:
- Transmit clocking for transceivers
- Reduce the number of required oscillators on the board
I/O PLLs are optimized for use with memory interfaces and LVDS SERDES. You can use the I/O PLLs to:
- Reduce the number of required oscillators on the board
- Reduce the clock pins used in the FPGA by synthesizing multiple clock frequencies from a single reference clock source
- Simplify the design of external memory interfaces and high-speed LVDS interfaces
- Ease timing closure because the I/O PLLs are tightly coupled with the I/Os
- Compensate for clock network delay
- Zero delay buffering