Visible to Intel only — GUID: GUID-D042EC84-E4D6-46CD-B885-541A5C2EE813
Visible to Intel only — GUID: GUID-D042EC84-E4D6-46CD-B885-541A5C2EE813
?sytrs_aa
Solves a system of linear equations A * X = B with a symmetric matrix.
call ssytrs_aa(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)
call dsytrs_aa(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)
call csytrs_aa(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)
call zsytrs_aa(uplo, n, nrhs, A, lda, ipiv, B, ldb, work, lwork, info)
Description
?sytrs_aa solves a system of linear equations A * X = B with a symmetric matrix A using the factorization A = U*T*UT or A = L*T*LT computed by ?sytrf_aa.
Input Parameters
- uplo
-
CHARACTER*1
Specifies whether the details of the factorization are stored as an upper or lower triangular matrix.
- = 'U': Upper triangular; the form is A = U*T*UT.
- = 'L': Lower triangular; the form is A = L*T*LT.
- n
-
INTEGER
The order of the matrix A. n ≥ 0.
- nrhs
-
INTEGER
The number of right-hand sides; that is, the number of columns of the matrix B. nrhs ≥ 0.
- A
-
REAL for ssytrs_aa
DOUBLE COMPLEX for dsytrs_aa
COMPLEX for csytrs_aa
COMPLEX*16 for zsytrs_aa
Array, dimension (lda,n). Details of factors computed by ?sytrf_aa.
- lda
-
INTEGER
The leading dimension of the array A.lda ≥ max(1, n).
- ipiv
-
INTEGER
Array, dimension (n). Details of the interchanges as computed by ?sytrf_aa.
- B
-
REAL for ssytrs_aa
DOUBLE COMPLEX for dsytrs_aa
COMPLEX for csytrs_aa
COMPLEX*16 for zsytrs_aa
Array, dimension (ldb,nrhs). On entry, the right-hand side matrix B.
- ldb
-
INTEGER
The leading dimension of the array B. ldb ≥ max(1, n).
- work
-
Array, dimension (MAX(1,lwork)).
REAL for ssytrs_aa
DOUBLE COMPLEX for dsytrs_aa
COMPLEX for csytrs_aa
COMPLEX*16 for zsytrs_aa
- lwork
-
INTEGER
The length of the array work.
Output Parameters
- B
-
REAL for ssytrs_aa
DOUBLE COMPLEX for dsytrs_aa
COMPLEX for csytrs_aa
COMPLEX*16 for zsytrs_aa
On exit, the solution matrix X.
- info
-
INTEGER
- If info = 0: Successful exit.
- < 0: If info = -i, the ith argument had an illegal value.