Visible to Intel only — GUID: GUID-0231C8CF-78A9-4EC8-929C-C35A52F08FFF
Visible to Intel only — GUID: GUID-0231C8CF-78A9-4EC8-929C-C35A52F08FFF
mkl_?omatcopy_batch
Computes a group of out of place scaled matrix copy or transposition operations on general matrices.
Syntax
call mkl_somatcopy_batch(layout, trans_array, rows_array, cols_array, alpha_array, A_array, lda_array, B_array, ldb_array, group_count, group_size)
call mkl_domatcopy_batch(layout, trans_array, rows_array, cols_array, alpha_array, A_array, lda_array, B_array, ldb_array, group_count, group_size)
call mkl_comatcopy_batch(layout, trans_array, rows_array, cols_array, alpha_array, A_array, lda_array, B_array, ldb_array, group_count, group_size)
call mkl_zomatcopy_batch(layout, trans_array, rows_array, cols_array, alpha_array, A_array, lda_array, B_array, ldb_array, group_count, group_size)
Description
The mkl_?omatcopy_batch routine performs a series of out-of-place scaled matrix copies or transpositions. They are similar to the mkl_?omatcopy routine counterparts, but the mkl_?omatcopy_batch routine performs matrix operations with groups of matrices. Each group has the same parameters (matrix size, leading dimension, and scaling parameter), but a single call to mkl_?omatcopy_batch operates on multiple groups, and each group can have different parameters, unlike the related mkl_?omatcopy_batch_strided routines.
The operation is defined as
idx = 0 for i = 0..group_count - 1 m in rows_array[i], n in cols_array[i], and alpha in alpha_array[i] for j = 0..group_size[i] - 1 A and B matrices in a_array[idx] and b_array[idx], respectively B := alpha*op(A) idx = idx + 1 end for end for
Where op(X) is one of op(X)=X, op(X)=X', op(X)=conjg(X'), or op(X)=conjg(X). A is a m-by-n matrix such that m and n are elements of rows_array and cols_array.
A and B represent matrices stored at addresses pointed to by A_array and B_array. The number of entries in A_array and B_array is total_batch_count = the sum of all of the group_size entries.
Input Parameters
- layout
-
CHARACTER*1.
Specifies whether two-dimensional array storage is row-major (R) or column-major (C).
- trans_array
-
CHARACTER*1.
Array of size group_count. For the group i, trans = trans_array[i] specifies the form of op(A), the transposition operation applied to the A matrix:
If trans = 'N' or 'n', op(A)=A.
If trans = 'T' or 't', op(A)=A'
If trans = 'C' or 'c', op(A)=conjg(A')
If trans = 'R' or 'r', op(A)=conjg(A)
- rows_array
-
INTEGER. Array of size group_count. Specifies the number of rows of the matrix A. The value of each element must be at least zero.
- cols_array
-
INTEGER. Array of size group_count. Specifies the number of columns of the matrix A. The value of each element must be at least zero.
- alpha_array
-
REAL for mkl_somatcopy_batch.
DOUBLE PRECISION for mkl_domatcopy_batch.
COMPLEX for mkl_comatcopy_batch.
DOUBLE COMPLEX for mkl_zomatcopy_batch.
Array of size group_count. Specifies the scalar alpha.
- A_array
-
INTEGER*8 for Intel® 64 architecture.
INTEGER*4 for IA-32 architecture.
Array of size total_batch_count, holding pointers to arrays used to store A input matrices.
- lda_array
-
INTEGER. Array of size group_count. The leading dimension of the input matrix A. It must be positive and at least m if column major layout is used or at least n if row major layout is used.
- ldb_array
-
INTEGER. Array of size group_count. The leading dimension of the output matrix B. It must be positive and at least
m if column major layout is used and op(A) = A or conjg(A)
n if row major layout is used and op(A) = A' or conjg(A')
n otherwise
- group_count
-
INTEGER. Specifies the number of groups. Must be at least 0
- group_size
-
INTEGER. Array of size group_count. The element group_size[i] specifies the number of matrices in group i. Each element in group_size must be at least 0.
Output Parameters
- B_array
-
INTEGER*8 for Intel® 64 architecture.
INTEGER*4 for IA-32 architecture.
Output array of size total_batch_count, holding pointers to arrays used to store the B output matrices, the contents of which are overwritten by the operation of the form alpha*op(A).