Visible to Intel only — GUID: GUID-2E2A6B33-0396-44E2-8F62-6F225BF8F99D
Visible to Intel only — GUID: GUID-2E2A6B33-0396-44E2-8F62-6F225BF8F99D
p?tran
Transposes a real distributed matrix.
Syntax
call pstran(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
call pdtran(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)
Include Files
- mkl_pblas.h
Description
The p?tran routines transpose a real distributed matrix. The operation is defined as
sub(C):=beta*sub(C) + alpha*sub(A)',
where:
alpha and beta are scalars,
sub(C) is an m-by-n distributed matrix, sub(C)=C(ic:ic+m-1, jc:jc+n-1).
sub(A) is a distributed matrix, sub(A)=A(ia:ia+n-1, ja:ja+m-1).
Input Parameters
- m
-
(global) INTEGER. Specifies the number of rows of the distributed matrix sub(C), m≥ 0.
- n
-
(global) INTEGER. Specifies the number of columns of the distributed matrix sub(C) , n≥ 0.
- alpha
-
(global)REAL for pstran
DOUBLE PRECISION for pdtran
Specifies the scalar alpha.
- a
-
(local)REAL for pstran
DOUBLE PRECISION for pdtran
Array, size (lld_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub(A).
- ia, ja
-
(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub(A), respectively.
- desca
-
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix A.
- beta
-
(global)REAL for pstran
DOUBLE PRECISION for pdtran
Specifies the scalar beta.
When beta is equal to zero, then sub(C) need not be set on input.
- c
-
(local)REAL for pstran
DOUBLE PRECISION for pdtran
Array, size (lld_c, LOCq(jc+n-1)).
This array contains the local pieces of the distributed matrix sub(C).
- ic, jc
-
(global) INTEGER. The row and column indices in the distributed matrix C indicating the first row and the first column of the submatrix sub(C), respectively.
- descc
-
(global and local) INTEGER array of dimension 9. The array descriptor of the distributed matrix C.
Output Parameters
- c
-
Overwritten by the updated submatrix.