Visible to Intel only — GUID: bhc1395127706041
Ixiasoft
1. Low Latency Ethernet 10G MAC Intel® FPGA IP Overview
2. Getting Started
3. Functional Description
4. Parameter Settings for the Low Latency Ethernet 10G MAC Intel® FPGA IP Core
5. Interface Signals
6. Configuration Registers
7. Low Latency Ethernet 10G MAC Intel® FPGA IP User Guide: Agilex™ 5 FPGAs and SoCs Archives
8. Document Revision History for the Low Latency Ethernet 10G MAC Intel® FPGA IP User Guide: Agilex™ 5 FPGAs and SoCs
2.1. Introduction to Intel® FPGA IP Cores
2.2. Installing and Licensing Intel® FPGA IP Cores
2.3. Specifying the IP Parameters and Options ( Quartus® Prime Pro Edition)
2.4. Generated File Structure
2.5. Simulating Intel® FPGA IP Cores
2.6. Upgrading the Low Latency Ethernet 10G MAC Intel® FPGA IP Core
2.7. Low Latency Ethernet 10G MAC Intel® FPGA IP Design Examples
5.1. Clock and Reset Signals
5.2. Speed Selection Signal
5.3. Error Correction Signals
5.4. Avalon® Memory-Mapped Interface Programming Signals
5.5. Avalon® Streaming Data Interfaces
5.6. Avalon® Streaming Flow Control Signals
5.7. Avalon® Streaming Status Interface
5.8. PHY-side Interfaces
5.9. IEEE 1588v2 Interfaces
Visible to Intel only — GUID: bhc1395127706041
Ixiasoft
3.6. Flow Control
The MAC IP core implements the following flow control mechanisms:
- IEEE 802.3 flow control—implements the IEEE 802.3 Annex 31B standard to manage congestion. When the MAC IP core experiences congestion, the core sends a pause frame to request its link partner to suspend transmission for a given period of time. This flow control is a mechanism to manage congestion at the local or remote partner. When the receiving device experiences congestion, it sends an XOFF pause frame to the emitting device to instruct the emitting device to stop sending data for a duration specified by the congested receiver. Data transmission resumes when the emitting device receives an XON pause frame (pause quanta = zero) or when the timer expires.
- Priority-based flow control (PFC)—implements the IEEE 802.1Qbb standard. PFC manages congestion based on priority levels. It supports up to 8 priority queues. When the receiving device experiences congestion on a priority queue, it sends a PFC frame requesting the emitting device to stop transmission on the priority queue for a duration specified by the congested receiver. When the receiving device is ready to receive transmission on the priority queue again, it sends a PFC frame instructing the emitting device to resume transmission on the priority queue.
Note: Altera recommends that you enable only one type of flow control at any one time.