Visible to Intel only — GUID: bhc1417759240203
Ixiasoft
1. Low Latency Ethernet 10G MAC Intel® FPGA IP Overview
2. Getting Started
3. Functional Description
4. Parameter Settings for the Low Latency Ethernet 10G MAC Intel® FPGA IP Core
5. Interface Signals
6. Configuration Registers
7. Low Latency Ethernet 10G MAC Intel® FPGA IP User Guide: Agilex™ 5 FPGAs and SoCs Archives
8. Document Revision History for the Low Latency Ethernet 10G MAC Intel® FPGA IP User Guide: Agilex™ 5 FPGAs and SoCs
2.1. Introduction to Intel® FPGA IP Cores
2.2. Installing and Licensing Intel® FPGA IP Cores
2.3. Specifying the IP Parameters and Options ( Quartus® Prime Pro Edition)
2.4. Generated File Structure
2.5. Simulating Intel® FPGA IP Cores
2.6. Upgrading the Low Latency Ethernet 10G MAC Intel® FPGA IP Core
2.7. Low Latency Ethernet 10G MAC Intel® FPGA IP Design Examples
5.1. Clock and Reset Signals
5.2. Speed Selection Signal
5.3. Error Correction Signals
5.4. Avalon® Memory-Mapped Interface Programming Signals
5.5. Avalon® Streaming Data Interfaces
5.6. Avalon® Streaming Flow Control Signals
5.7. Avalon® Streaming Status Interface
5.8. PHY-side Interfaces
5.9. IEEE 1588v2 Interfaces
Visible to Intel only — GUID: bhc1417759240203
Ixiasoft
2.6.1.1.3. Dual Clock FIFO
The bit skew of the dual clock FIFO gray-coded pointers must be within one 312.5 MHz clock period.
The timing constraint file uses the set_net_delay to constraint the fitter placement and set_max_skew to perform timing check on the paths. For a project with very high device utilization, Altera recommends that you implement addition steps like floor planning or Logic Lock to aid the place-and-route process. The additional steps can give a more consistent timing closure along these paths instead of only relying on the set_net_delay.