Visible to Intel only — GUID: gfv1490746692049
Ixiasoft
Product Discontinuance Notification
1. About the RapidIO Intel FPGA IP Core
2. Getting Started
3. Parameter Settings
4. Functional Description
5. Signals
6. Software Interface
7. Testbench
8. Platform Designer (Standard) Design Example
9. RapidIO Intel FPGA IP User Guide Archives
10. Document Revision History for the RapidIO Intel® FPGA IP User Guide
A. Initialization Sequence
B. Porting a RapidIO Design from the Previous Version of Software
2.1. Installing and Licensing Intel® FPGA IP Cores
2.2. Generating IP Cores
2.3. IP Core Generation Output ( Intel® Quartus® Prime Standard Edition)
2.4. RapidIO IP Core Testbench Files
2.5. Simulating IP Cores
2.6. Integrating Your IP Core in Your Design
2.7. Specifying Timing Constraints
2.8. Compiling the Full Design and Programming the FPGA
2.9. Instantiating Multiple RapidIO IP Cores
2.6.1. Calibration Clock
2.6.2. Dynamic Transceiver Reconfiguration Controller
2.6.3. Transceiver Settings
2.6.4. Adding Transceiver Analog Settings for Arria II GX, Arria II GZ, and Stratix IV GX Variations
2.6.5. External Transceiver PLL
2.6.6. Transceiver PHY Reset Controller for Intel® Arria® 10 and Intel® Cyclone® 10 GX Variations
2.9.1. Clock and Signal Requirements for Arria® V, Cyclone® V, and Stratix® V Variations
2.9.2. Clock and Signal Requirements for Arria II GX, Arria II GZ, Cyclone IV GX, and Stratix IV GX Variations
2.9.3. Correcting the Synopsys Design Constraints File to Distinguish RapidIO IP Core Instances
2.9.4. Sourcing Multiple Tcl Scripts for Variations other than Intel® Arria® 10 and Intel® Cyclone® 10 GX
6.2.1. Capability Registers (CARs)
6.2.2. Command and Status Registers (CSRs)
6.2.3. Maintenance Interrupt Control Registers
6.2.4. Receive Maintenance Registers
6.2.5. Transmit Maintenance Registers
6.2.6. Transmit Port-Write Registers
6.2.7. Receive Port-Write Registers
6.2.8. Input/Output Master Address Mapping Registers
6.2.9. Input/Output Slave Mapping Registers
6.2.10. Input/Output Slave Interrupts
6.2.11. Transport Layer Feature Register
6.2.12. Error Management Registers
6.2.13. Doorbell Message Registers
7.1. Reset, Initialization, and Configuration
7.2. Maintenance Write and Read Transactions
7.3. SWRITE Transactions
7.4. NWRITE_R Transactions
7.5. NWRITE Transactions
7.6. NREAD Transactions
7.7. Doorbell Transactions
7.8. Doorbell and Write Transactions With Transaction Order Preservation
7.9. Port-Write Transactions
7.10. Transactions Across the Avalon® -ST Pass-Through Interface
Visible to Intel only — GUID: gfv1490746692049
Ixiasoft
4.6.2.3. Port-Write Reception Module
The Port-Write reception module processes receive port-write request MAINTENANCE packets. The following bits in the Maintenance Interrupt register in the implementation-defined space report any detected anomaly. The System Maintenance Avalon® -MM slave port interrupt signal sys_mnt_s_irq is asserted if the corresponding bit in the Maintenance Interrupt Enable register is set.
- The PORT_WRITE_ERROR bit is set when the packet is either too small (no payload) or too large (more than 64 bytes of payload), or if the actual size of the packet is larger than indicated by the wrsize field. These errors do not cause any of the standard defined errors to be declared and recorded in the error management registers.
- The PACKET_DROPPED bit is set when a port-write request packet is received but port-write reception is not enabled (by setting bit PORT_WRITE_ENA in the Rx Port Write Control register, described in or if a previously received port-write has not been read out from the Rx Port Write Buffer register.