Visible to Intel only — Ixiasoft
1. Logic Array Blocks and Adaptive Logic Modules in Cyclone® 10 GX Devices
2. Embedded Memory Blocks in Cyclone® 10 GX Devices
3. Variable Precision DSP Blocks in Cyclone® 10 GX Devices
4. Clock Networks and PLLs in Cyclone® 10 GX Devices
5. I/O and High Speed I/O in Cyclone® 10 GX Devices
6. External Memory Interfaces in Cyclone® 10 GX Devices
7. Configuration, Design Security, and Remote System Upgrades in Cyclone® 10 GX Devices
8. SEU Mitigation for Cyclone® 10 GX Devices
9. JTAG Boundary-Scan Testing in Cyclone® 10 GX Devices
10. Power Management in Cyclone® 10 GX Devices
2.1. Types of Embedded Memory
2.2. Embedded Memory Design Guidelines for Cyclone® 10 GX Devices
2.3. Embedded Memory Features
2.4. Embedded Memory Modes
2.5. Embedded Memory Clocking Modes
2.6. Parity Bit in Embedded Memory Blocks
2.7. Byte Enable in Embedded Memory Blocks
2.8. Memory Blocks Packed Mode Support
2.9. Memory Blocks Address Clock Enable Support
2.10. Memory Blocks Asynchronous Clear
2.11. Memory Blocks Error Correction Code Support
2.12. Embedded Memory Blocks in Cyclone® 10 GX Devices Revision History
3.4.1. Input Register Bank
3.4.2. Pipeline Register
3.4.3. Pre-Adder for Fixed-Point Arithmetic
3.4.4. Internal Coefficient for Fixed-Point Arithmetic
3.4.5. Multipliers
3.4.6. Adder
3.4.7. Accumulator and Chainout Adder for Fixed-Point Arithmetic
3.4.8. Systolic Registers for Fixed-Point Arithmetic
3.4.9. Double Accumulation Register for Fixed-Point Arithmetic
3.4.10. Output Register Bank
4.2.1. PLL Usage
4.2.2. PLL Architecture
4.2.3. PLL Control Signals
4.2.4. Clock Feedback Modes
4.2.5. Clock Multiplication and Division
4.2.6. Programmable Phase Shift
4.2.7. Programmable Duty Cycle
4.2.8. PLL Cascading
4.2.9. Reference Clock Sources
4.2.10. Clock Switchover
4.2.11. PLL Reconfiguration and Dynamic Phase Shift
5.1. I/O and Differential I/O Buffers in Cyclone® 10 GX Devices
5.2. I/O Standards and Voltage Levels in Cyclone® 10 GX Devices
5.3. Altera FPGA I/O IP Cores for Cyclone® 10 GX Devices
5.4. I/O Resources in Cyclone® 10 GX Devices
5.5. Architecture and General Features of I/Os in Cyclone® 10 GX Devices
5.6. High Speed Source-Synchronous SERDES and DPA in Cyclone® 10 GX Devices
5.7. Using the I/Os and High Speed I/Os in Cyclone® 10 GX Devices
5.8. I/O and High Speed I/O in Cyclone® 10 GX Devices Revision History
5.6.1. Cyclone® 10 GX LVDS SERDES Usage Modes
5.6.2. SERDES Circuitry
5.6.3. SERDES I/O Standards Support in Cyclone® 10 GX Devices
5.6.4. Differential Transmitter in Cyclone® 10 GX Devices
5.6.5. Differential Receiver in Cyclone® 10 GX Devices
5.6.6. PLLs and Clocking for Cyclone® 10 GX Devices
5.6.7. Timing and Optimization for Cyclone® 10 GX Devices
5.6.6.1. Clocking Differential Transmitters
5.6.6.2. Clocking Differential Receivers
5.6.6.3. Guideline: LVDS Reference Clock Source
5.6.6.4. Guideline: Use PLLs in Integer PLL Mode for LVDS
5.6.6.5. Guideline: Use High-Speed Clock from PLL to Clock LVDS SERDES Only
5.6.6.6. Guideline: Pin Placement for Differential Channels
5.6.6.7. LVDS Interface with External PLL Mode
5.7.1. I/O and High-Speed I/O General Guidelines for Cyclone® 10 GX Devices
5.7.2. Mixing Voltage-Referenced and Non-Voltage-Referenced I/O Standards
5.7.3. Guideline: Maximum Current Driving I/O Pins While Turned Off and During Power Sequencing
5.7.4. Guideline: Maximum DC Current Restrictions
5.7.5. Guideline: LVDS SERDES IP Core Instantiation
5.7.6. Guideline: LVDS SERDES Pin Pairs for Soft-CDR Mode
5.7.7. Guideline: Minimizing High Jitter Impact on Cyclone® 10 GX GPIO Performance
5.7.8. Guideline: Usage of I/O Bank 2A for External Memory Interfaces
6.1. Key Features of the Cyclone® 10 GX External Memory Interface Solution
6.2. Memory Standards Supported by Cyclone® 10 GX Devices
6.3. External Memory Interface Widths in Cyclone® 10 GX Devices
6.4. External Memory Interface I/O Pins in Cyclone® 10 GX Devices
6.5. Memory Interfaces Support in Cyclone® 10 GX Device Packages
6.6. External Memory Interface IP Support in Cyclone® 10 GX Devices
6.7. External Memory Interface Architecture of Cyclone® 10 GX Devices
6.8. External Memory Interfaces in Cyclone® 10 GX Devices Revision History
9.1. BST Operation Control
9.2. I/O Voltage for JTAG Operation
9.3. Performing BST
9.4. Enabling and Disabling IEEE Std. 1149.1 BST Circuitry
9.5. Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing
9.6. IEEE Std. 1149.1 Boundary-Scan Register
9.7. IEEE Std. 1149.6 Boundary-Scan Register
9.8. JTAG Boundary-Scan Testing in Cyclone® 10 GX Devices Revision History
10.1. Power Consumption
10.2. Programmable Power Technology
10.3. Power Sense Line
10.4. Voltage Sensor
10.5. Temperature Sensing Diode
10.6. Power-On Reset Circuitry
10.7. Power Sequencing Considerations for Cyclone® 10 GX Devices
10.8. Power Supply Design
10.9. Power Management in Cyclone® 10 GX Devices Revision History
Visible to Intel only — Ixiasoft
5.6.7.1.4. Receiver Skew Margin for Non-DPA Mode
Different modes of LVDS receivers use different specifications, which can help in deciding the ability to sample the received serial data correctly.
- In DPA mode, use DPA jitter tolerance instead of the receiver skew margin (RSKM).
- In non-DPA mode, use RSKM, TCCS, and sampling window (SW) specifications for high-speed source-synchronous differential signals in the receiver data path.
RSKM Equation
The RSKM equation expresses the relationship between RSKM, TCCS, and SW.
Figure 111. RSKM Equation
Conventions used for the equation:
- RSKM—the timing margin between the clock input of the receiver and the data input sampling window, and the jitter induced from core noise and I/O switching noise.
- Time unit interval (TUI)—time period of the serial data.
- SW—the period of time that the input data must be stable to ensure that the LVDS receiver samples the data successfully. The SW is a device property and varies according to device speed grade.
- TCCS—the timing difference between the fastest and the slowest output edges across channels driven by the same PLL. The TCCS measurement includes the tCO variation, clock, and clock skew.
Note: If there is additional board channel-to-channel skew, consider the total receiver channel-to-channel skew (RCCS) instead of TCCS. .
You must calculate the RSKM value, based on the data rate and device, to determine if the LVDS receiver can sample the data:
- A positive RSKM value, after deducting transmitter jitter, indicates that the LVDS receiver can sample the data properly.
- A negative RSKM value, after deducting transmitter jitter, indicates that the LVDS receiver cannot sample the data properly.
Figure 112. Differential High-Speed Timing Diagram and Timing Budget This figure shows the relationship between the RSKM, TCCS, and the SW of the receiver.