Visible to Intel only — GUID: GUID-932B0A5D-D7A0-4AB1-8CC0-70F67F2EBC2A
Visible to Intel only — GUID: GUID-932B0A5D-D7A0-4AB1-8CC0-70F67F2EBC2A
?sytri
Computes the inverse of a symmetric matrix using U*D*UT or L*D*LT Bunch-Kaufman factorization.
Syntax
lapack_int LAPACKE_ssytri (int matrix_layout , char uplo , lapack_int n , float * a , lapack_int lda , const lapack_int * ipiv );
lapack_int LAPACKE_dsytri (int matrix_layout , char uplo , lapack_int n , double * a , lapack_int lda , const lapack_int * ipiv );
lapack_int LAPACKE_csytri (int matrix_layout , char uplo , lapack_int n , lapack_complex_float * a , lapack_int lda , const lapack_int * ipiv );
lapack_int LAPACKE_zsytri (int matrix_layout , char uplo , lapack_int n , lapack_complex_double * a , lapack_int lda , const lapack_int * ipiv );
Include Files
- mkl.h
Description
The routine computes the inverse inv(A) of a symmetric matrix A. Before calling this routine, call ?sytrf to factorize A.
Input Parameters
matrix_layout |
Specifies whether matrix storage layout is row major (LAPACK_ROW_MAJOR) or column major (LAPACK_COL_MAJOR). |
uplo |
Must be 'U' or 'L'. Indicates how the input matrix A has been factored: If uplo = 'U', the array a stores the Bunch-Kaufman factorization A = U*D*UT. If uplo = 'L', the array a stores the Bunch-Kaufman factorization A = L*D*LT. |
n |
The order of the matrix A; n≥ 0. |
a |
a(size max(1, lda*n)) contains the factorization of the matrix A, as returned by ?sytrf. |
lda |
The leading dimension of a; lda≥ max(1, n). |
ipiv |
Array, size at least max(1, n). The ipiv array, as returned by ?sytrf. |
Output Parameters
a |
Overwritten by the n-by-n matrix inv(A). |
Return Values
This function returns a value info.
If info = 0, the execution is successful.
If info =-i, parameter i had an illegal value.
If info = i, the i-th diagonal element of D is zero, D is singular, and the inversion could not be completed.
Application Notes
The computed inverse X satisfies the following error bounds:
|D*UT*PT*X*P*U - I| ≤ c(n)ε(|D||UT|PT|X|P|U| + |D||D-1|)
for uplo = 'U', and
|D*LT*PT*X*P*L - I| ≤ c(n)ε(|D||LT|PT|X|P|L| + |D||D-1|)
for uplo = 'L'. Here c(n) is a modest linear function of n, and ε is the machine precision; I denotes the identity matrix.
The total number of floating-point operations is approximately (2/3)n3 for real flavors and (8/3)n3 for complex flavors.