Developer Reference for Intel® oneAPI Math Kernel Library for C

ID 766684
Date 10/31/2024
Public
Document Table of Contents

mkl_?diatrsv

Triangular solvers with simplified interface for a sparse matrix in the diagonal format with one-based indexing (deprecated).

Syntax

void mkl_sdiatrsv (const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const float *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const float *x , float *y );

void mkl_ddiatrsv (const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const double *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const double *x , double *y );

void mkl_cdiatrsv (const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const MKL_Complex8 *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const MKL_Complex8 *x , MKL_Complex8 *y );

void mkl_zdiatrsv (const char *uplo , const char *transa , const char *diag , const MKL_INT *m , const MKL_Complex16 *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const MKL_Complex16 *x , MKL_Complex16 *y );

Include Files

  • mkl.h

Description

This routine is deprecated, but no replacement is available yet in the Inspector-Executor Sparse BLAS API interfaces. You can continue using this routine until a replacement is provided and this can be fully removed.

The mkl_?diatrsv routine solves a system of linear equations with matrix-vector operations for a sparse matrix stored in the diagonal format:

A*y = x

or

AT*y = x,

where:

x and y are vectors,

A is a sparse upper or lower triangular matrix with unit or non-unit main diagonal, AT is the transpose of A.

NOTE:

This routine supports only one-based indexing of the input arrays.

Input Parameters

uplo

Specifies whether the upper or low triangle of the matrix A is used.

If uplo = 'U' or 'u', then the upper triangle of the matrix A is used.

If uplo = 'L' or 'l', then the low triangle of the matrix A is used.

transa

Specifies the system of linear equations.

If transa = 'N' or 'n', then A*y = x

If transa = 'T' or 't' or 'C' or 'c', then AT*y = x,

diag

Specifies whether A is unit triangular.

If diag = 'U' or 'u', then A is unit triangular.

If diag = 'N' or 'n', then A is not unit triangular.

m

Number of rows of the matrix A.

val

Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix A. Refer to values array description in Diagonal Storage Scheme for more details.

lval

Leading dimension of val, lvalm. Refer to lval description in Diagonal Storage Scheme for more details.

idiag

Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix A.

NOTE:

All elements of this array must be sorted in increasing order.

Refer to distance array description in Diagonal Storage Scheme for more details.

ndiag

Specifies the number of non-zero diagonals of the matrix A.

x

Array, size is m.

On entry, the array x must contain the vector x.

Output Parameters

y

Array, size at least m.

Contains the vector y.