Visible to Intel only — GUID: GUID-00347F6B-7F5A-46B7-93DA-AF6905A84432
Visible to Intel only — GUID: GUID-00347F6B-7F5A-46B7-93DA-AF6905A84432
?getf2
Computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).
Syntax
lapack_int LAPACKE_sgetf2 (int matrix_layout, lapack_int m, lapack_int n, float* a, lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_dgetf2 (int matrix_layout, lapack_int m, lapack_int n, double* a, lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_cgetf2 (int matrix_layout, lapack_int m, lapack_int n, lapack_complex_float* a, lapack_int lda, lapack_int * ipiv);
lapack_int LAPACKE_zgetf2 (int matrix_layout, lapack_int m, lapack_int n, lapack_complex_double* a, lapack_int lda, lapack_int * ipiv);
Include Files
- mkl.h
Description
The routine computes the LU factorization of a general m-by-n matrix A using partial pivoting with row interchanges. The factorization has the form
A = P*L*U
where p is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n) and U is upper triangular (upper trapezoidal if m < n).
Input Parameters
A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.
- m
-
The number of rows in the matrix A (m≥ 0).
- n
-
The number of columns in A (n≥ 0).
- a
-
Array, size at least max(1, lda*n) for column major and max(1, lda*m) for row major layout. Array a contains the m-by-n matrix A.
- lda
-
The leading dimension of a; at least max(1, m) for column major layout and max(1,n) for row major layout.
Output Parameters
- a
-
Overwritten by L and U. The unit diagonal elements of L are not stored.
- ipiv
-
Array, size at least max(1,min(m,n)).
The pivot indices: for 1 ≤ i ≤ n, row i was interchanged with row ipiv(i).
Return Values
This function returns a value info.
If info = -i, the i-th parameter had an illegal value.
If info = i >0, uii is 0. The factorization has been completed, but U is exactly singular. Division by 0 will occur if you use the factor U for solving a system of linear equations.
If info = -1011, memory allocation error occurred.