Visible to Intel only — GUID: frt1696536962603
Ixiasoft
1. Answers to Top FAQs
2. About This Application Note
3. Component Bandwidth Projections and Limitations
4. Resource Planning for Intel Agilex® 7 M-Series FPGAs
5. Factors Affecting NoC Performance
6. Debugging the NoC
7. Document Revision History of AN 1003: Multi Memory IP System Resource Planning for Intel Agilex® 7 M-Series FPGAs
4.1. Hard Memory NoC Resource Planning Overview
4.2. I/O Bank Blockage
4.3. Planning Avalon® Streaming Utilization
4.4. Planning for Initiator Blockage Impact from GPIO, LVDS SERDES, and PHY Lite Bypass Mode
4.5. Planning NoC PLL and I/O PLL
4.6. Pin Planning for HPS EMIF
4.7. Planning for an External Memory Interface
4.8. Planning for HBM2E
4.9. Planning for the Fabric NoC
4.10. Planning for AXI4-Lite
4.11. Planning NoC and Memory Solution Clocks
5.1. Recommended Performance Tuning Procedure
5.2. NoC Initiator and Target Clock Rate
5.3. Recommended NoC Design Topologies
5.4. Traffic Access Pattern and Memory Controller Efficiency
5.5. Traffic Access Pattern Due To Multiple Traffic Flows
5.6. Transaction Size
5.7. Congestion Interaction
5.8. Bandwidth Sharing At Each Switch
5.9. Exceeding NoC Bandwidth Limits
5.10. Maximum Number of Outstanding Transactions
5.11. QoS Priority
5.12. AxID
5.13. Example: 2x2 HBM Crossbars
5.14. Example: 16x16 Crossbar
Visible to Intel only — GUID: frt1696536962603
Ixiasoft
5.10. Maximum Number of Outstanding Transactions
Each bridge has a maximum limit of 128 outstanding read transactions and 64 outstanding write transactions.
When issuing transactions of 64 or 128 bytes, it is possible to reach these maximum limits if there is some contention on the NoC that delays transactions. Increasing the transaction size can mitigate this problem.