Visible to Intel only — GUID: GUID-1574A17C-7E59-42D3-AF07-4E73A142B9D9
Visible to Intel only — GUID: GUID-1574A17C-7E59-42D3-AF07-4E73A142B9D9
p?pbtrs
Solves a system of linear equations with a Cholesky-factored symmetric/Hermitian positive-definite band matrix.
void pspbtrs (char *uplo , MKL_INT *n , MKL_INT *bw , MKL_INT *nrhs , float *a , MKL_INT *ja , MKL_INT *desca , float *b , MKL_INT *ib , MKL_INT *descb , float *af , MKL_INT *laf , float *work , MKL_INT *lwork , MKL_INT *info );
void pdpbtrs (char *uplo , MKL_INT *n , MKL_INT *bw , MKL_INT *nrhs , double *a , MKL_INT *ja , MKL_INT *desca , double *b , MKL_INT *ib , MKL_INT *descb , double *af , MKL_INT *laf , double *work , MKL_INT *lwork , MKL_INT *info );
void pcpbtrs (char *uplo , MKL_INT *n , MKL_INT *bw , MKL_INT *nrhs , MKL_Complex8 *a , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *descb , MKL_Complex8 *af , MKL_INT *laf , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT *info );
void pzpbtrs (char *uplo , MKL_INT *n , MKL_INT *bw , MKL_INT *nrhs , MKL_Complex16 *a , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *descb , MKL_Complex16 *af , MKL_INT *laf , MKL_Complex16 *work , MKL_INT *lwork , MKL_INT *info );
- mkl_scalapack.h
The p?pbtrsfunction solves for X a system of distributed linear equations in the form:
sub(A)*X = sub(B) ,
where sub(A) = A(1:n, ja:ja+n-1) is an n-by-n real symmetric or complex Hermitian positive definite distributed band matrix, and sub(B) denotes the distributed matrix B(ib:ib+n-1, 1:nrhs).
This function uses Cholesky factorization
sub(A) = P*UH*U*PT, or sub(A) = P*L*LH*PT
computed by p?pbtrf.
- uplo
-
(global) Must be 'U' or 'L'.
If uplo = 'U', upper triangle of sub(A) is stored;
If uplo = 'L', lower triangle of sub(A) is stored.
- n
-
(global) The order of the distributed matrix sub(A) (n≥0).
- bw
-
(global) The number of superdiagonals of the distributed matrix if uplo = 'U', or the number of subdiagonals if uplo = 'L' (bw≥0).
- nrhs
-
(global) The number of right hand sides; the number of columns of the distributed matrix sub(B) (nrhs≥0).
- a, b
-
(local)
Pointers into the local memory to arrays of local sizes lld_a*LOCc(ja+n-1) and lld_b*LOCc(nrhs-1), respectively.
The array a contains the permuted triangular factor U or L from the Cholesky factorization sub(A) = P*UH*U*PT, or sub(A) = P*L*LH*PT of the band matrix A, as returned by p?pbtrf.
On entry, the array b contains the local pieces of the n-by-nrhs right hand side distributed matrix sub(B).
- ja
-
(global) The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
- desca
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
If dtype_a = 501, then dlen_≥ 7;
else if dtype_a = 1, then dlen_≥ 9.
- ib
-
(global) The row index in the global matrix B indicating the first row of the matrix sub(B).
- descb
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix B.
If dtype_b = 502, then dlen_≥ 7;
else if dtype_b = 1, then dlen_≥ 9.
- af, work
-
(local) Arrays, same type as a.
The array af is of size laf. It contains auxiliary fill-in space. The fill-in space is created in a call to the factorization function p?dbtrf and is stored in af.
The array work is a workspace array of size lwork.
- laf
-
(local) The size of the array af.
Must be laf≥nrhs*bw.
If laf is not large enough, an error code will be returned and the minimum acceptable size will be returned in af[0].
- lwork
-
(local or global) The size of the array work, must be at least lwork≥bw2.
- b
-
On exit, if info=0, this array contains the local pieces of the n-by-nrhs solution distributed matrix X.
- work[0]
-
On exit, work[0] contains the minimum value of lwork required for optimum performance.
- info
-
If info=0, the execution is successful.
info < 0:
If the i-th argument is an array and the j-th entry, indexed j - 1, had an illegal value, then info = -(i*100+j); if the i-th argument is a scalar and had an illegal value, then info = -i.