Visible to Intel only — GUID: GUID-8CDDF6FC-D561-4AD6-B707-FD0A530C7A27
Visible to Intel only — GUID: GUID-8CDDF6FC-D561-4AD6-B707-FD0A530C7A27
p?ormhr
Multiplies a general matrix by the orthogonal transformation matrix from a reduction to Hessenberg form determined by p?gehrd.
void psormhr (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *ilo , MKL_INT *ihi , float *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , float *tau , float *c , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , float *work , MKL_INT *lwork , MKL_INT *info );
void pdormhr (char *side , char *trans , MKL_INT *m , MKL_INT *n , MKL_INT *ilo , MKL_INT *ihi , double *a , MKL_INT *ia , MKL_INT *ja , MKL_INT *desca , double *tau , double *c , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , double *work , MKL_INT *lwork , MKL_INT *info );
- mkl_scalapack.h
The p?ormhr function overwrites the general real distributed m-by-n matrix sub(C)= C(iс:iс+m-1,jс:jс+n-1) with
side ='L' | side ='R' | |
trans = 'N': | Q*sub(C) | sub(C)*Q |
trans = 'T': | QT*sub(C) | sub(C)*QT |
where Q is a real orthogonal distributed matrix of order nq, with nq = m if side = 'L' and nq = n if side = 'R'.
Q is defined as the product of ihi-ilo elementary reflectors, as returned by p?gehrd.
Q = H(ilo) H(ilo+1)... H(ihi-1).
- side
-
(global)
='L': Q or QT is applied from the left.
='R': Q or QT is applied from the right.
- trans
-
(global)
='N', no transpose, Q is applied.
='T', transpose, QT is applied.
- m
-
(global) The number of rows in the distributed matrix sub (C) (m≥0).
- n
-
(global) The number of columns in he distributed matrix sub (C) (n≥0).
- ilo, ihi
-
(global)
ilo and ihi must have the same values as in the previous call of p?gehrd. Q is equal to the unit matrix except for the distributed submatrix Q(ia+ilo:ia+ihi-1,ja+ilo:ja+ihi-1).
If side = 'L', 1≤ilo≤ihi≤max(1,m);
If side = 'R', 1≤ilo≤ihi≤max(1,n);
ilo and ihi are relative indexes.
- a
-
(local)
Pointer into the local memory to an array of size lld_a*LOCc(ja+m-1) if side = 'L', and lld_a*LOCc(ja+n-1) if side = 'R'.
Contains the vectors which define the elementary reflectors, as returned by p?gehrd.
- ia, ja
-
(global) The row and column indices in the global matrix A indicating the first row and the first column of the submatrix A, respectively.
- desca
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
- tau
-
(local)
Array of size LOCc(ja+m-2) if side = 'L', and LOCc(ja+n-2) if side = 'R'.
tau[j] contains the scalar factor of the elementary reflector H(j+1) as returned by p?gehrd (0 ≤ j < size(tau)). tau is tied to the distributed matrix A.
- c
-
(local)
Pointer into the local memory to an array of size lld_c*LOCc(jc+n-1).
Contains the local pieces of the distributed matrix sub(C).
- ic, jc
-
(global) The row and column indices in the global matrix C indicating the first row and the first column of the submatrix C, respectively.
- descc
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix C.
- work
-
(local)
Workspace array with size lwork.
- lwork
-
(local or global)
The size of the array work.
lwork must be at least iaa = ia + ilo; jaa = ja+ilo-1;
If side = 'L',
mi = ihi-ilo; ni = n; icc = ic + ilo; jcc = jc; lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0+mpc0)*nb_a) + nb_a*nb_a
else if side = 'R',
mi = m; ni = ihi-ilo; icc = ic; jcc = jc + ilo; lwork ≥ max((nb_a*(nb_a-1))/2, (nqc0+max(npa0+numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
where lcmq = lcm/NPCOL with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c), icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
NOTE:mod(x,y) is the integer remainder of x/y.
ilcm, indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the function blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is assumed; the function only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
- c
-
sub(C) is overwritten by Q*sub(C), or Q'*sub(C), or sub(C)*Q', or sub(C)*Q.
- work[0]
-
On exit work[0] contains the minimum value of lwork required for optimum performance.
- info
-
(global)
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-th entry, indexed j - 1, had an illegal value, then info = -(i*100+j); if the i-th argument is a scalar and had an illegal value, then info = -i.