Visible to Intel only — GUID: GUID-8ADD959A-F854-41F7-9B16-53C6A1886D21
Visible to Intel only — GUID: GUID-8ADD959A-F854-41F7-9B16-53C6A1886D21
p?larzc
Applies (multiplies by) the conjugate transpose of an elementary reflector as returned by p?tzrzf to a general matrix.
void pclarzc (char *side , MKL_INT *m , MKL_INT *n , MKL_INT *l , MKL_Complex8 *v , MKL_INT *iv , MKL_INT *jv , MKL_INT *descv , MKL_INT *incv , MKL_Complex8 *tau , MKL_Complex8 *c , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *work );
void pzlarzc (char *side , MKL_INT *m , MKL_INT *n , MKL_INT *l , MKL_Complex16 *v , MKL_INT *iv , MKL_INT *jv , MKL_INT *descv , MKL_INT *incv , MKL_Complex16 *tau , MKL_Complex16 *c , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex16 *work );
- mkl_scalapack.h
The p?larzcfunction applies a complex elementary reflector QH to a complex m-by-n distributed matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is represented in the form
Q = i-tau*v*v',
where tau is a complex scalar and v is a complex vector.
If tau = 0, then Q is taken to be the unit matrix.
Q is a product of k elementary reflectors as returned by p?tzrzf.
- side
-
(global)
if side = 'L': form QH*sub(C);
if side = 'R': form sub(C)*QH .
- m
-
(global)
The number of rows in the distributed matrix sub(C). (m ≥ 0).
- n
-
(global)
The number of columns in the distributed matrix sub(C). (n ≥ 0).
- l
-
(global)
The columns of the distributed matrix sub(A) containing the meaningful part of the Householder reflectors.
If side = 'L', m ≥ l ≥ 0,
if side = 'R', n ≥ l ≥ 0.
- v
-
(local).
-
Pointer into the local memory to an array of size lld_v * LOCc(n_v) containing the local pieces of the global distributed matrix V representing the Householder transformation Q,
V(iv:iv+l-1, jv) if side = 'L' and incv = 1,
V(iv, jv:jv+l-1) if side = 'L' and incv = m_v,
V(iv:iv+l-1, jv) if side = 'R' and incv = 1,
V(iv, jv:jv+l-1) if side = 'R' and incv = m_v.
The vector v in the representation of Q. v is not used if tau = 0.
- iv, jv
-
(global)
The row and column indices in the global matrix V indicating the first row and the first column of the matrix sub(V), respectively.
- descv
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix V.
- incv
-
(global)
The global increment for the elements of V. Only two values of incv are supported in this version, namely 1 and m_v.
incv must not be zero.
- tau
-
(local)
Array of size LOCc(jv) if incv = 1, and LOCr(iv) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix V.
- c
-
(local).
Pointer into the local memory to an array of size lld_c * LOCc(jc+n-1), containing the local pieces of sub(C).
- ic, jc
-
(global)
The row and column indices in the global matrix C indicating the first row and the first column of the matrix sub(C), respectively.
- descc
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix C.
- work
-
(local).
If incv = 1, if side = 'L' , if ivcol = iccol, lwork ≥ nqc0 else lwork ≥ mpc0 + max(1, nqc0) end if else if side = 'R' , lwork ≥ nqc0 + max(max(1, mpc0), numroc(numroc(n+icoffc, nb_v, 0, 0, npcol), nb_v, 0, 0, lcmq)) end if else if incv = m_v, if side = 'L' , lwork ≥ mpc0 + max(max(1, nqc0), numroc(numroc(m+iroffc, mb_v, 0, 0, nprow), mb_v, 0, 0, lcmp)) else if side = 'R', if ivrow = icrow, lwork ≥ mpc0 else lwork ≥ nqc0 + max(1, mpc0) end if end if end if
Here lcm is the least common multiple of nprow and npcol;
lcm = ilcm(nprow, npcol), lcmp = lcm/nprow, lcmq= lcm/npcol,
iroffc = mod(ic-1, mb_c), icoffc= mod(jc-1, nb_c),
icrow = indxg2p(ic, mb_c, myrow, rsrc_c, nprow),
iccol = indxg2p(jc, nb_c, mycol, csrc_c, npcol),
mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),
nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions;
myrow, mycol, nprow, and npcol can be determined by calling the function blacs_gridinfo.
- c
-
(local).
On exit, sub(C) is overwritten by the QH*sub(C) if side = 'L', or sub(C)*QH if side = 'R'.