Visible to Intel only — GUID: GUID-408CCF11-7138-4242-A84F-6124C5C85EB6
Visible to Intel only — GUID: GUID-408CCF11-7138-4242-A84F-6124C5C85EB6
?dttrsv
Solves a general tridiagonal system of linear equations using the LU factorization computed by ?dttrf.
void sdttrsv (char *uplo , char *trans , MKL_INT *n , MKL_INT *nrhs , float *dl , float *d , float *du , float *b , MKL_INT *ldb , MKL_INT *info );
void ddttrsv (char *uplo , char *trans , MKL_INT *n , MKL_INT *nrhs , double *dl , double *d , double *du , double *b , MKL_INT *ldb , MKL_INT *info );
void cdttrsv (char *uplo , char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex8 *dl , MKL_Complex8 *d , MKL_Complex8 *du , MKL_Complex8 *b , MKL_INT *ldb , MKL_INT *info );
void zdttrsv (char *uplo , char *trans , MKL_INT *n , MKL_INT *nrhs , MKL_Complex16 *dl , MKL_Complex16 *d , MKL_Complex16 *du , MKL_Complex16 *b , MKL_INT *ldb , MKL_INT *info );
- mkl_scalapack.h
The ?dttrsvfunction solves one of the following systems of linear equations:
L*X = B, LT*X = B, or LH*X = B,
U*X = B, UT*X = B, or UH*X = B
with factors of the tridiagonal matrix A from the LU factorization computed by ?dttrf.
- uplo
-
Specifies whether to solve with L or U.
- trans
-
Must be 'N' or 'T' or 'C'.
Indicates the form of the equations:
If trans = 'N', then A*X=B is solved for X (no transpose).
If trans = 'T', then AT*X = B is solved for X (transpose).
If trans = 'C', then AH*X = B is solved for X (conjugate transpose).
- n
-
The order of the matrix A(n ≥ 0).
- nrhs
-
The number of right-hand sides, that is, the number of columns in the matrix B(nrhs ≥ 0).
- dl,d,du,b
-
The array dl of size (n - 1) contains the (n - 1) multipliers that define the matrix L from the LU factorization of A.
The array d of size n contains n diagonal elements of the upper triangular matrix U from the LU factorization of A.
The array du of size (n - 1) contains the (n - 1) elements of the first super-diagonal of U.
On entry, the array b of size ldb * nrhs contains the right-hand side of matrix B.
- ldb
-
The leading dimension of the array b; ldb ≥ max(1, n).
- b
-
Overwritten by the solution matrix X.
- info
-
If info=0, the execution is successful.
If info = -i, the i-th parameter had an illegal value.