Visible to Intel only — GUID: GUID-C215C064-52E9-4F56-AC65-D7D730F2F456
Visible to Intel only — GUID: GUID-C215C064-52E9-4F56-AC65-D7D730F2F456
p?larf
Applies an elementary reflector to a general rectangular matrix.
void pslarf (char *side , MKL_INT *m , MKL_INT *n , float *v , MKL_INT *iv , MKL_INT *jv , MKL_INT *descv , MKL_INT *incv , float *tau , float *c , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , float *work );
void pdlarf (char *side , MKL_INT *m , MKL_INT *n , double *v , MKL_INT *iv , MKL_INT *jv , MKL_INT *descv , MKL_INT *incv , double *tau , double *c , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , double *work );
void pclarf (char *side , MKL_INT *m , MKL_INT *n , MKL_Complex8 *v , MKL_INT *iv , MKL_INT *jv , MKL_INT *descv , MKL_INT *incv , MKL_Complex8 *tau , MKL_Complex8 *c , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex8 *work );
void pzlarf (char *side , MKL_INT *m , MKL_INT *n , MKL_Complex16 *v , MKL_INT *iv , MKL_INT *jv , MKL_INT *descv , MKL_INT *incv , MKL_Complex16 *tau , MKL_Complex16 *c , MKL_INT *ic , MKL_INT *jc , MKL_INT *descc , MKL_Complex16 *work );
- mkl_scalapack.h
The p?larffunction applies a real/complex elementary reflector Q (or QT) to a real/complex m-by-n distributed matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1), from either the left or the right. Q is represented in the form
Q = I-tau*v*v',
where tau is a real/complex scalar and v is a real/complex vector.
If tau = 0, then Q is taken to be the unit matrix.
- side
-
(global).
= 'L': form Q*sub(C),
= 'R': form sub(C)*Q, Q=QT.
- m
-
(global)
The number of rows in the distributed submatrix sub(A). (m≥ 0).
- n
-
(global)
The number of columns in the distributed submatrix sub(A). (n ≥ 0).
- v
-
(local).
Pointer into the local memory to an array of size lld_v * LOCc(n_v), containing the local pieces of the global distributed matrix V representing the Householder transformation Q,
V(iv:iv+m-1, jv) if side = 'L' and incv = 1,
V(iv, jv:jv+m-1) if side = 'L' and incv = m_v,
V(iv:iv+n-1, jv) if side = 'R' and incv = 1,
V(iv, jv:jv+n-1) if side = 'R' and incv = m_v.
The array v is the representation of Q. v is not used if tau = 0.
- iv, jv
-
(global) The row and column indices in the global matrix V indicating the first row and the first column of the matrix sub(V), respectively.
- descv
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix V.
- incv
-
(global)
The global increment for the elements of V. Only two values of incv are supported in this version, namely 1 and m_v.
incv must not be zero.
- tau
-
(local).
Array of size LOCc(jv) if incv = 1, and LOCr(iv) otherwise. This array contains the Householder scalars related to the Householder vectors.
tau is tied to the distributed matrix V.
- c
-
(local).
Pointer into the local memory to an array of size lld_c * LOCc(jc+n-1), containing the local pieces of sub(C).
- ic, jc
-
(global)
The row and column indices in the global matrix C indicating the first row and the first column of the matrix sub(C), respectively.
- descc
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix C.
- work
-
(local).
Array of size lwork.
If incv = 1,
if side = 'L',
if ivcol = iccol,
lwork≥nqc0
else
lwork≥mpc0 + max( 1, nqc0 )
end if
else if side = 'R' ,
lwork≥nqc0 + max( max( 1, mpc0), numroc(numroc( n+
icoffc,nb_v,0,0,npcol),nb_v,0,0,lcmq ) )
end if
else if incv = m_v,
if side = 'L',
lwork≥mpc0 + max( max( 1, nqc0 ), numroc(
numroc(m+iroffc,mb_v,0,0,nprow ),mb_v,0,0, lcmp ) )
else if side = 'R',
if ivrow = icrow,
lwork≥mpc0
else
lwork≥nqc0 + max( 1, mpc0 )
end if
end if
end if,
where lcm is the least common multiple of nprow and npcol and lcm = ilcm( nprow, npcol ), lcmp = lcm/nprow, lcmq = lcm/npcol,
iroffc = mod( ic-1, mb_c ), icoffc = mod( jc-1, nb_c ),
icrow = indxg2p( ic, mb_c, myrow, rsrc_c, nprow ),
iccol = indxg2p( jc, nb_c, mycol, csrc_c, npcol ),
mpc0 = numroc( m+iroffc, mb_c, myrow, icrow, nprow ),
nqc0 = numroc( n+icoffc, nb_c, mycol, iccol, npcol ),
ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the function blacs_gridinfo.
- c
-
(local).
On exit, sub(C) is overwritten by the Q*sub(C) if side = 'L',
or sub(C) * Q if side = 'R'.