Visible to Intel only — GUID: GUID-5B40BBEC-E095-4151-A5E1-11CDBB494A2E
Visible to Intel only — GUID: GUID-5B40BBEC-E095-4151-A5E1-11CDBB494A2E
mkl_?diamm
Computes matrix-matrix product of a sparse matrix stored in the diagonal format with one-based indexing (deprecated).
void mkl_sdiamm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const float *alpha , const char *matdescra , const float *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const float *b , const MKL_INT *ldb , const float *beta , float *c , const MKL_INT *ldc );
void mkl_ddiamm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const double *alpha , const char *matdescra , const double *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const double *b , const MKL_INT *ldb , const double *beta , double *c , const MKL_INT *ldc );
void mkl_cdiamm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const MKL_Complex8 *alpha , const char *matdescra , const MKL_Complex8 *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const MKL_Complex8 *b , const MKL_INT *ldb , const MKL_Complex8 *beta , MKL_Complex8 *c , const MKL_INT *ldc );
void mkl_zdiamm (const char *transa , const MKL_INT *m , const MKL_INT *n , const MKL_INT *k , const MKL_Complex16 *alpha , const char *matdescra , const MKL_Complex16 *val , const MKL_INT *lval , const MKL_INT *idiag , const MKL_INT *ndiag , const MKL_Complex16 *b , const MKL_INT *ldb , const MKL_Complex16 *beta , MKL_Complex16 *c , const MKL_INT *ldc );
- mkl.h
This routine is deprecated. Use Use mkl_sparse_?_mmfrom the Intel® oneAPI Math Kernel Library Inspector-executor Sparse BLAS interface instead.
The mkl_?diamm routine performs a matrix-matrix operation defined as
C := alpha*A*B + beta*C
or
C := alpha*AT*B + beta*C,
or
C := alpha*AH*B + beta*C,
where:
alpha and beta are scalars,
B and C are dense matrices, A is an m-by-k sparse matrix in the diagonal format, AT is the transpose of A, and AH is the conjugate transpose of A.
This routine supports only one-based indexing of the input arrays.
- transa
-
Specifies the operation.
If transa = 'N' or 'n', then C := alpha*A*B + beta*C,
If transa = 'T' or 't', then C := alpha*AT*B + beta*C,
If transa = 'C' or 'c', then C := alpha*AH*B + beta*C.
- m
-
Number of rows of the matrix A.
- n
-
Number of columns of the matrix C.
- k
-
Number of columns of the matrix A.
- alpha
-
Specifies the scalar alpha.
- matdescra
-
Array of six elements, specifies properties of the matrix used for operation. Only first four array elements are used, their possible values are given in Table “Possible Values of the Parameter matdescra (descra)”. Possible combinations of element values of this parameter are given in Table “Possible Combinations of Element Values of the Parameter matdescra”.
- val
-
Two-dimensional array of size lval by ndiag, contains non-zero diagonals of the matrix A. Refer to values array description in Diagonal Storage Scheme for more details.
- lval
-
Leading dimension of val, lval≥m. Refer to lval description in Diagonal Storage Scheme for more details.
- idiag
-
Array of length ndiag, contains the distances between main diagonal and each non-zero diagonals in the matrix A.
Refer to distance array description in Diagonal Storage Scheme for more details.
- ndiag
-
Specifies the number of non-zero diagonals of the matrix A.
- b
-
Array, size ldb* n.
On entry with transa = 'N' or 'n', the leading k-by-n part of the array b must contain the matrix B, otherwise the leading m-by-n part of the array b must contain the matrix B.
- ldb
-
Specifies the leading dimension of b as declared in the calling (sub)program.
- beta
-
Specifies the scalar beta.
- c
-
Array, size ldc by n.
On entry, the leading m-by-n part of the array c must contain the matrix C, otherwise the leading k-by-n part of the array c must contain the matrix C.
- ldc
-
Specifies the leading dimension of c as declared in the calling (sub)program.
- c
-
Overwritten by the matrix (alpha*A*B + beta*C), (alpha*AT*B + beta*C), or (alpha*AH*B + beta*C).