Visible to Intel only — GUID: skm1710540785121
Ixiasoft
1. About the External Memory Interfaces Agilex™ 5 FPGA IP
2. Agilex™ 5 FPGA EMIF IP – Introduction
3. Agilex™ 5 FPGA EMIF IP – Product Architecture
4. Agilex™ 5 FPGA EMIF IP – End-User Signals
5. Agilex™ 5 FPGA EMIF IP – Simulating Memory IP
6. Agilex™ 5 FPGA EMIF IP - DDR4 Support
7. Agilex™ 5 FPGA EMIF IP - DDR5 Support
8. Agilex™ 5 FPGA EMIF IP - LPDDR4 Support
9. Agilex™ 5 FPGA EMIF IP - LPDDR5 Support
10. Agilex™ 5 FPGA EMIF IP – Timing Closure
11. Agilex™ 5 FPGA EMIF IP – Controller Optimization
12. Agilex™ 5 FPGA EMIF IP – Debugging
13. Document Revision History for External Memory Interfaces (EMIF) IP User Guide
3.2.1. Agilex™ 5 EMIF Architecture: I/O Subsystem
3.2.2. Agilex™ 5 EMIF Architecture: I/O SSM
3.2.3. Agilex™ 5 EMIF Architecture: HSIO Bank
3.2.4. Agilex™ 5 EMIF Architecture: I/O Lane
3.2.5. Agilex™ 5 EMIF Architecture: Input DQS Clock Tree
3.2.6. Agilex™ 5 EMIF Architecture: PHY Clock Tree
3.2.7. Agilex™ 5 EMIF Architecture: PLL Reference Clock Networks
3.2.8. Agilex™ 5 EMIF Architecture: Clock Phase Alignment
3.2.9. User Clock in Different Core Access Modes
6.2.3.1. Address and Command Pin Placement for DDR4
6.2.3.2. DDR4 Data Width Mapping
6.2.3.3. General Guidelines
6.2.3.4. x4 DIMM Implementation
6.2.3.5. Specific Pin Connection Requirements
6.2.3.6. Command and Address Signals
6.2.3.7. Clock Signals
6.2.3.8. Data, Data Strobes, DM/DBI, and Optional ECC Signals
6.4.3.1. 1 Rank x 8 Discrete (Memory Down) Topology
6.4.3.2. 1 Rank x 16 Discrete (Memory Down) Topology
6.4.3.3. VREF_CA/RESET Signal Routing Guidelines for 1 Rank x 8 and 1 Rank x 16 Discrete (Memory Down) Topology
6.4.3.4. Skew Matching Guidelines for DDR4 (Memory Down) Discrete Configurations
6.4.3.5. Power Delivery Recommendation for DDR4 Discrete Configurations
6.4.3.6. DDR4 Simulation Strategy
12.1. Interface Configuration Performance Issues
12.2. Functional Issue Evaluation
12.3. Timing Issue Characteristics
12.4. Verifying Memory IP Using the Signal Tap Logic Analyzer
12.5. Debugging with the External Memory Interface Debug Toolkit
12.6. Generating Traffic with the Test Engine IP
12.7. Guidelines for Developing HDL for Traffic Generator
12.8. Guidelines for Traffic Generator Status Check
12.9. Hardware Debugging Guidelines
12.10. Create a Simplified Design that Demonstrates the Same Issue
12.11. Measure Power Distribution Network
12.12. Measure Signal Integrity and Setup and Hold Margin
12.13. Vary Voltage
12.14. Operate at a Lower Speed
12.15. Determine Whether the Issue Exists in Previous Versions of Software
12.16. Determine Whether the Issue Exists in the Current Version of Software
12.17. Try A Different PCB
12.18. Try Other Configurations
12.19. Debugging Checklist
12.20. Categorizing Hardware Issues
12.21. Signal Integrity Issues
12.22. Characteristics of Signal Integrity Issues
12.23. Evaluating Signal Integrity Issues
12.24. Skew
12.25. Crosstalk
12.26. Power System
12.27. Clock Signals
12.28. Address and Command Signals
12.29. Read Data Valid Window and Eye Diagram
12.30. Write Data Valid Window and Eye Diagram
12.31. Hardware and Calibration Issues
12.32. Memory Timing Parameter Evaluation
12.33. Verify that the Board Has the Correct Memory Component or DIMM Installed
Visible to Intel only — GUID: skm1710540785121
Ixiasoft
9.2.4.3. LPDDR5 Byte Lane Swapping
The data lane can be swapped when the byte-lanes are utilized as DQ/DQS pins. Byte lane swapping on utilized lanes is allowed when you swap all the DQ/DQS/DM pins in the same byte lane with the other utilized byte lane.
The rules for swapping DQ byte lane are as follows:
- You can only swap between utilized DQ lanes.
- You cannot swap a DQ lane with an AC lane.
- Additional restrictions apply when you use a x16 memory component:
- You must place DQ group 0 and DQ group 1 on adjacent byte lanes, unless they are separated by AC lanes. These 2 groups must be connected to the same x16 memory component.
- You must place DQ group 2 and DQ group 3 on adjacent byte lanes, unless they are separated by AC lanes. These 2 groups must be connected to the same x16 memory component.
- If you use only one byte of the x16 memory component, you must use only the lower byte of the memory component.
Controller | Data Width Usage | BL7 P95:P84 | BL6 P83:P72 | BL5 P71:P60 | BL4 P59:P48 | BL3 P47:P36 | BL2 P35:P24 | BL1 P23:P12 | BL0 P11:P0 |
---|---|---|---|---|---|---|---|---|---|
Primary & Secondary | LPDDR5 2ch x16 | DQ[1] S | DQS[0] S | AC1 S | AC0 S | AC1 P | AC0 P | DQ[1] P | DQ[0] P |
Primary | LPDDR5 x32 | DQ[3] P | DQ[2] P | GPIO | GPIO | AC1 P | AC0 P | DQ[1] P | DQ[0] P |
Note:
|
Example 1: LPDDR5 2 ch x16
DQ[0] and DQ[1] of the primary controller can be swapped with each other. DQ[0] and DQ[1] of the secondary controller can be swapped with each other.
Example 2: LPDDR5 x32
DQ[0] and DQ[1] can be swapped with each other. DQ[2] and DQ[3] can be swapped with each other.