Video and Vision Processing Suite Intel® FPGA IP User Guide

ID 683329
Date 7/08/2024
Public
Document Table of Contents
1. About the Video and Vision Processing Suite 2. Getting Started with the Video and Vision Processing IPs 3. Video and Vision Processing IPs Functional Description 4. Video and Vision Processing IP Interfaces 5. Video and Vision Processing IP Registers 6. Video and Vision Processing IPs Software Programming Model 7. Protocol Converter Intel® FPGA IP 8. 1D LUT Intel® FPGA IP 9. 3D LUT Intel® FPGA IP 10. Adaptive Noise Reduction Intel® FPGA IP 11. Advanced Test Pattern Generator Intel® FPGA IP 12. AXI-Stream Broadcaster Intel® FPGA IP 13. Bits per Color Sample Adapter Intel FPGA IP 14. Black Level Correction Intel® FPGA IP 15. Black Level Statistics Intel® FPGA IP 16. Chroma Key Intel® FPGA IP 17. Chroma Resampler Intel® FPGA IP 18. Clipper Intel® FPGA IP 19. Clocked Video Input Intel® FPGA IP 20. Clocked Video to Full-Raster Converter Intel® FPGA IP 21. Clocked Video Output Intel® FPGA IP 22. Color Plane Manager Intel® FPGA IP 23. Color Space Converter Intel® FPGA IP 24. Defective Pixel Correction Intel® FPGA IP 25. Deinterlacer Intel® FPGA IP 26. Demosaic Intel® FPGA IP 27. FIR Filter Intel® FPGA IP 28. Frame Cleaner Intel® FPGA IP 29. Full-Raster to Clocked Video Converter Intel® FPGA IP 30. Full-Raster to Streaming Converter Intel® FPGA IP 31. Genlock Controller Intel® FPGA IP 32. Generic Crosspoint Intel® FPGA IP 33. Genlock Signal Router Intel® FPGA IP 34. Guard Bands Intel® FPGA IP 35. Histogram Statistics Intel® FPGA IP 36. Interlacer Intel® FPGA IP 37. Mixer Intel® FPGA IP 38. Pixels in Parallel Converter Intel® FPGA IP 39. Scaler Intel® FPGA IP 40. Stream Cleaner Intel® FPGA IP 41. Switch Intel® FPGA IP 42. Tone Mapping Operator Intel® FPGA IP 43. Test Pattern Generator Intel® FPGA IP 44. Unsharp Mask Intel® FPGA IP 45. Video and Vision Monitor Intel FPGA IP 46. Video Frame Buffer Intel® FPGA IP 47. Video Frame Reader Intel FPGA IP 48. Video Frame Writer Intel FPGA IP 49. Video Streaming FIFO Intel® FPGA IP 50. Video Timing Generator Intel® FPGA IP 51. Vignette Correction Intel® FPGA IP 52. Warp Intel® FPGA IP 53. White Balance Correction Intel® FPGA IP 54. White Balance Statistics Intel® FPGA IP 55. Design Security 56. Document Revision History for Video and Vision Processing Suite User Guide

9.3. 3D LUT IP Block Description

The 3D LUT IP accepts RGB-format video input from its Intel FPGA video streaming interface. It uses the most significant bits (MSBs) of the 3 color component inputs to retrieve data values from the contents of the LUT and the least significant bits (LSBs) to interpolate the final output value. An Avalon Memory-Mapped compatible CPU interface handles the run-time control and LUT programming.
Figure 15. 3D LUT IP block diagram

The address decoder converts the MSBs of the three input color components into read addresses for the LUT. If you turn on Double buffered, the IP adds a page offset to the address when selecting the second buffer via the CPU interface. Page-flip double buffering allows for instantaneous switching between LUTs.

The LUT RAM instantiates the on-chip memory containing the LUT. The 3D LUT cube vertices are divided across eight sub-RAMs to output the target sub-cube vertices in parallel. Enabling the second buffer doubles the memory depth of the LUT. Both buffers' contents are programmable via the CPU interface and can also be pre-initialized in the firmware via the 3D LUT IP GUI.

The tetrahedral interpolator uses a DSP-efficient method to interpolate four of the LUT subcube vertices using the input LSBs. Part of the input MSBs determines which of the six tetrahedra in the target sub-cube contains the pixel.

The control register in the run-time control register map allows you to switch between the interpolated output and the bypass output.

Consider these points when integrating into a streaming video pipeline:

  • The IP controls buffer selection and output enable and only updates them at the start of each new frame.
  • The internal pipeline forwards control signals and is unaffected by changes to video resolution.
Figure 16. 3D LUT color transform examplesFrom top left: original, saturation, brightness increase, colorize (purple), colorize (green), desaturation