Video and Vision Processing Suite Intel® FPGA IP User Guide

ID 683329
Date 9/30/2024
Public
Document Table of Contents
1. About the Video and Vision Processing Suite 2. Getting Started with the Video and Vision Processing IPs 3. Video and Vision Processing IPs Functional Description 4. Video and Vision Processing IP Interfaces 5. Video and Vision Processing IP Registers 6. Video and Vision Processing IPs Software Programming Model 7. Protocol Converter Intel® FPGA IP 8. 1D LUT Intel® FPGA IP 9. 3D LUT Intel® FPGA IP 10. Adaptive Noise Reduction Intel® FPGA IP 11. Advanced Test Pattern Generator Intel® FPGA IP 12. AXI-Stream Broadcaster Intel® FPGA IP 13. Bits per Color Sample Adapter Intel® FPGA IP 14. Black Level Correction Intel® FPGA IP 15. Black Level Statistics Intel® FPGA IP 16. Chroma Key Intel® FPGA IP 17. Chroma Resampler Intel® FPGA IP 18. Clipper Intel® FPGA IP 19. Clocked Video Input Intel® FPGA IP 20. Clocked Video to Full-Raster Converter Intel® FPGA IP 21. Clocked Video Output Intel® FPGA IP 22. Color Plane Manager Intel® FPGA IP 23. Color Space Converter Intel® FPGA IP 24. Defective Pixel Correction Intel® FPGA IP 25. Deinterlacer Intel® FPGA IP 26. Demosaic Intel® FPGA IP 27. FIR Filter Intel® FPGA IP 28. Frame Cleaner Intel® FPGA IP 29. Full-Raster to Clocked Video Converter Intel® FPGA IP 30. Full-Raster to Streaming Converter Intel® FPGA IP 31. Genlock Controller Intel® FPGA IP 32. Generic Crosspoint Intel® FPGA IP 33. Genlock Signal Router Intel® FPGA IP 34. Guard Bands Intel® FPGA IP 35. Histogram Statistics Intel® FPGA IP 36. Interlacer Intel® FPGA IP 37. Mixer Intel® FPGA IP 38. Pixels in Parallel Converter Intel® FPGA IP 39. Scaler Intel® FPGA IP 40. Stream Cleaner Intel® FPGA IP 41. Switch Intel® FPGA IP 42. Text Box Intel® FPGA IP 43. Tone Mapping Operator Intel® FPGA IP 44. Test Pattern Generator Intel® FPGA IP 45. Unsharp Mask Intel® FPGA IP 46. Video and Vision Monitor Intel FPGA IP 47. Video Frame Buffer Intel® FPGA IP 48. Video Frame Reader Intel FPGA IP 49. Video Frame Writer Intel FPGA IP 50. Video Streaming FIFO Intel® FPGA IP 51. Video Timing Generator Intel® FPGA IP 52. Vignette Correction Intel® FPGA IP 53. Warp Intel® FPGA IP 54. White Balance Correction Intel® FPGA IP 55. White Balance Statistics Intel® FPGA IP 56. Design Security 57. Document Revision History for Video and Vision Processing Suite User Guide

13.1. About the Bits per Color Sample Adapter IP

The Intel FPGA Streaming Video protocol requires you to configure each interface for a maximum number of bits to represent each color sample. This setting determines the width of the tdata bus. The IP allows you to connect two interfaces with different settings for bits per color sample. The IP offers dithering that adds noise to the signal when connecting two interfaces with different settings for bits per color sample.

When the input bits per color sample is less than the output bits per color sample, the IP adds the required number of bits at the LSB end of the tdata bus. The IP fixes these additional bits to 0. When the input bits per color sample is greater than the output bits per color sample, the IP clips the required number of bits from the LSB end of each color sample.

When you configure the IP for use with the lite variant of the Intel FPGA Streaming Video interface protocol, it consumes no FPGA resources as the clip and pad operations do not require any. However, when you configure the IP for use with the full variant of the protocol, a small amount of additional logic is required to ensure that the clip and pad operations do not affect the data in the nonvideo packets. The full variant of the protocol includes image information packets, and these packets contain a field indicating how many of the bits in each color plane are active for the current video stream.

When using the full variant of the protocol, you can include an Avalon Memory-mapped agent control interface to control the output bits per color field value at runtime via the register map. If you do not turn on Memory mapped control interface, the IP uses the default value for the bits per color field. When converting from a lower input bits per color sample value at the input to a higher value at the output, the IP does not modify this field as the pixel data does not change. However, when converting from a higher input bits per color sample value to a lower output bits per color sample value, you must modify the active bits per color sample field if it indicates a value greater than the maximum bits per color supported at the output.

Figure 25. DitheringWith and without dithering (4 to 10 bps)