Video and Vision Processing Suite Intel® FPGA IP User Guide

ID 683329
Date 9/30/2024
Public
Document Table of Contents
1. About the Video and Vision Processing Suite 2. Getting Started with the Video and Vision Processing IPs 3. Video and Vision Processing IPs Functional Description 4. Video and Vision Processing IP Interfaces 5. Video and Vision Processing IP Registers 6. Video and Vision Processing IPs Software Programming Model 7. Protocol Converter Intel® FPGA IP 8. 1D LUT Intel® FPGA IP 9. 3D LUT Intel® FPGA IP 10. Adaptive Noise Reduction Intel® FPGA IP 11. Advanced Test Pattern Generator Intel® FPGA IP 12. AXI-Stream Broadcaster Intel® FPGA IP 13. Bits per Color Sample Adapter Intel® FPGA IP 14. Black Level Correction Intel® FPGA IP 15. Black Level Statistics Intel® FPGA IP 16. Chroma Key Intel® FPGA IP 17. Chroma Resampler Intel® FPGA IP 18. Clipper Intel® FPGA IP 19. Clocked Video Input Intel® FPGA IP 20. Clocked Video to Full-Raster Converter Intel® FPGA IP 21. Clocked Video Output Intel® FPGA IP 22. Color Plane Manager Intel® FPGA IP 23. Color Space Converter Intel® FPGA IP 24. Defective Pixel Correction Intel® FPGA IP 25. Deinterlacer Intel® FPGA IP 26. Demosaic Intel® FPGA IP 27. FIR Filter Intel® FPGA IP 28. Frame Cleaner Intel® FPGA IP 29. Full-Raster to Clocked Video Converter Intel® FPGA IP 30. Full-Raster to Streaming Converter Intel® FPGA IP 31. Genlock Controller Intel® FPGA IP 32. Generic Crosspoint Intel® FPGA IP 33. Genlock Signal Router Intel® FPGA IP 34. Guard Bands Intel® FPGA IP 35. Histogram Statistics Intel® FPGA IP 36. Interlacer Intel® FPGA IP 37. Mixer Intel® FPGA IP 38. Pixels in Parallel Converter Intel® FPGA IP 39. Scaler Intel® FPGA IP 40. Stream Cleaner Intel® FPGA IP 41. Switch Intel® FPGA IP 42. Text Box Intel® FPGA IP 43. Tone Mapping Operator Intel® FPGA IP 44. Test Pattern Generator Intel® FPGA IP 45. Unsharp Mask Intel® FPGA IP 46. Video and Vision Monitor Intel FPGA IP 47. Video Frame Buffer Intel® FPGA IP 48. Video Frame Reader Intel FPGA IP 49. Video Frame Writer Intel FPGA IP 50. Video Streaming FIFO Intel® FPGA IP 51. Video Timing Generator Intel® FPGA IP 52. Vignette Correction Intel® FPGA IP 53. Warp Intel® FPGA IP 54. White Balance Correction Intel® FPGA IP 55. White Balance Statistics Intel® FPGA IP 56. Design Security 57. Document Revision History for Video and Vision Processing Suite User Guide

51.3. Video Timing Generator IP Functional Description

The IP comprises a simple but powerful counter and comparator architecture. Two counters track the real-time horizontal and vertical position of a pixel within the full-raster interface. Multiple software programmable comparators generate timing pulses for the f, v, and h signals.
Figure 138. Timing Generator high-level block diagram.

This processor decoder and register map provide a simple interface to the processor bus. The IP shows all run-time parameters for the video timing through the register map. All run-time parameters default to values provided at build-time.

These counters and logic contain a horizontal pixel counter and vertical line counter. The submodule produces the video timing signals f, v, and h as specified by the processor registers. The processor specifies additional programmable “pulses” to aid other modules in the system. For example, a programmable pulse can trigger the preload on the SDRAM controller.

This formatter takes the f, v, and h signals and forms a full-raster bus, or an Intel clocked video bus. You select the type of bus at build time.

Output Pixels

The output timing bus contains space for pixel data. The value of the pixel data can be set by the processor at run time but initially defaults to the value defined at build time.

The IP has a build-time option to include or exclude the tReady signal for the full-raster interface. However, the IP does not use this signal. The IP includes it only to allow connection to a full-raster bus that includes this signal. If the tReady signal is deasserted, the Video Timing Generator IP continues to produce data.

Timing

Figure 139. Timing for a Progressive Video ImageThe processor registers can configure the timing signals to generate sync or blank timing for a progressive image
Figure 140. Timing for an Interlaced ImageThe figure shows the processor registers can configure the timing signals to generate sync or blank timing for an interlaced image.

Clock Domains

The Timing Generator produces output on the transmit clock for the connectivity IP.

The processor interface operates on the processor clock domain. Drive the processor interface from a known stable clock, such as a dedicated processor clock. Do not drive connectivity IP from the transmit clock as it can be unstable. For example when standards change, which can potentially corrupt the processor interface.