Visible to Intel only — GUID: GUID-BC6488AC-0F55-43DC-AAA2-ADB941937ACD
Visible to Intel only — GUID: GUID-BC6488AC-0F55-43DC-AAA2-ADB941937ACD
p?pttrs
Solves a system of linear equations with a symmetric (Hermitian) positive-definite tridiagonal distributed matrix using the factorization computed by p?pttrf.
Syntax
void pspttrs (MKL_INT *n , MKL_INT *nrhs , float *d , float *e , MKL_INT *ja , MKL_INT *desca , float *b , MKL_INT *ib , MKL_INT *descb , float *af , MKL_INT *laf , float *work , MKL_INT *lwork , MKL_INT *info );
void pdpttrs (MKL_INT *n , MKL_INT *nrhs , double *d , double *e , MKL_INT *ja , MKL_INT *desca , double *b , MKL_INT *ib , MKL_INT *descb , double *af , MKL_INT *laf , double *work , MKL_INT *lwork , MKL_INT *info );
void pcpttrs (char *uplo , MKL_INT *n , MKL_INT *nrhs , float *d , MKL_Complex8 *e , MKL_INT *ja , MKL_INT *desca , MKL_Complex8 *b , MKL_INT *ib , MKL_INT *descb , MKL_Complex8 *af , MKL_INT *laf , MKL_Complex8 *work , MKL_INT *lwork , MKL_INT *info );
void pzpttrs (char *uplo , MKL_INT *n , MKL_INT *nrhs , double *d , MKL_Complex16 *e , MKL_INT *ja , MKL_INT *desca , MKL_Complex16 *b , MKL_INT *ib , MKL_INT *descb , MKL_Complex16 *af , MKL_INT *laf , MKL_Complex16 *work , MKL_INT *lwork , MKL_INT *info );
Include Files
- mkl_scalapack.h
Description
The p?pttrsfunction solves for X a system of distributed linear equations in the form:
sub(A)*X = sub(B) ,
where sub(A) = A(1:n, ja:ja+n-1) is an n-by-n real symmetric or complex Hermitian positive definite tridiagonal distributed matrix, and sub(B) denotes the distributed matrix B(ib:ib+n-1, 1:nrhs).
This function uses the factorization
sub(A) = P*L*D*LH*PT, or sub(A) = P*UH*D*U*PT
computed by p?pttrf.
Input Parameters
- uplo
-
(global, used in complex flavors only)
Must be 'U' or 'L'.
If uplo = 'U', upper triangle of sub(A) is stored;
If uplo = 'L', lower triangle of sub(A) is stored.
- n
-
(global) The order of the distributed matrix sub(A) (n≥0).
- nrhs
-
(global) The number of right hand sides; the number of columns of the distributed matrix sub(B) (nrhs≥0).
- d, e
-
(local)
Pointers into the local memory to arrays of size nb_a each.
These arrays contain details of the factorization as returned by p?pttrf
- ja
-
(global) The index in the global matrix A indicating the start of the matrix to be operated on (which may be either all of A or a submatrix of A).
- desca
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix A.
If dtype_a = 501 or dtype_a = 502, then dlen_≥ 7;
else if dtype_a = 1, then dlen_≥ 9.
- b
-
(local) Same type as d, e.
Pointer into the local memory to an array of local size
lld_b*LOCc(nrhs).
On entry, the array b contains the local pieces of the n-by-nrhsright hand side distributed matrix sub(B).
- ib
-
(global) The row index in the global matrix B indicating the first row of the matrix to be operated on (which may be either all of B or a submatrix of B).
- descb
-
(global and local) array of size dlen_. The array descriptor for the distributed matrix B.
If dtype_b = 502, then dlen_≥ 7;
else if dtype_b = 1, then dlen_≥ 9.
- af, work
-
(local)
Arrays of size laf and (lwork), respectively. The array af contains auxiliary fill-in space. The fill-in space is created in a call to the factorization function p?pttrf and is stored in af.
The array work is a workspace array.
- laf
-
(local) The size of the array af.
Must be laf≥nb_a+2.
If laf is not large enough, an error code is returned and the minimum acceptable size will be returned in af[0].
- lwork
-
(local or global) The size of the array work, must be at least
lwork≥ (10+2*min(100,nrhs))*NPCOL+4*nrhs.
Output Parameters
- b
-
On exit, this array contains the local pieces of the solution distributed matrix X.
- work[0])
-
On exit, work[0] contains the minimum value of lwork required for optimum performance.
- info
-
If info=0, the execution is successful.
info < 0:
if the i-th argument is an array and the j-th entry, indexed j - 1, had an illegal value, then info = -(i*100+j); if the i-th argument is a scalar and had an illegal value, then info = -i.