Visible to Intel only — GUID: GUID-F654BB04-9620-4A5A-9045-8276DD2B2BC3
FPGA Optimization Guide for Intel® oneAPI Toolkits
Introduction To FPGA Design Concepts
Analyze Your Design
Optimize Your Design
FPGA Optimization Flags, Attributes, Pragmas, and Extensions
Quick Reference
Additional Information
Document Revision History for the FPGA Optimization Guide for Intel® oneAPI Toolkits
Refactor the Loop-Carried Data Dependency
Relax Loop-Carried Dependency
Transfer Loop-Carried Dependency to Local Memory
Minimize the Memory Dependencies for Loop Pipelining
Unroll Loops
Fuse Loops to Reduce Overhead and Improve Performance
Optimize Loops With Loop Speculation
Remove Loop Bottlenecks
Shannonization to Improve FMAX/II
Optimize Inner Loop Throughput
Improve Loop Performance by Caching On-Chip Memory
Global Memory Bandwidth Use Calculation
Manual Partition of Global Memory
Partitioning Buffers Across Different Memory Types (Heterogeneous Memory)
Partitioning Buffers Across Memory Channels of the Same Memory Type
Ignoring Dependencies Between Accessor Arguments
Contiguous Memory Accesses
Static Memory Coalescing
Specify Schedule FMAX Target for Kernels (-Xsclock=<clock target>)
Create a 2xclock Interface (-Xsuse-2xclock)
Disable Burst-Interleaving of Global Memory (-Xsno-interleaving=<global_memory_name>)
Force Ring Interconnect for Global Memory (-Xsglobal-ring)
Force a Single Store Ring to Reduce Area (-Xsforce-single-store-ring)
Force Fewer Read Data Reorder Units to Reduce Area (-Xsnum-reorder)
Disable Hardware Kernel Invocation Queue (-Xsno-hardware-kernel-invocation-queue)
Modify the Handshaking Protocol Between Clusters (-Xshyper-optimized-handshaking)
Disable Automatic Fusion of Loops (-Xsdisable-auto-loop-fusion)
Fuse Adjacent Loops With Unequal Trip Counts (-Xsenable-unequal-tc-fusion)
Pipeline Loops in Non-task Kernels (-Xsauto-pipeline)
Control Semantics of Floating-Point Operations (-fp-model=<value>)
Modify the Rounding Mode of Floating-point Operations (-Xsrounding=<rounding_type>)
Global Control of Exit FIFO Latency of Stall-free Clusters (-Xssfc-exit-fifo-type=<value>)
Enable the Read-Only Cache for Read-Only Accessors (-Xsread-only-cache-size=<N>)
Control Hardware Implementation of the Supported Data Types and Math Operations (-Xsdsp-mode=<option>)
Generate Register Map Wrapper (-Xsregister-map-wrapper-type)
Visible to Intel only — GUID: GUID-F654BB04-9620-4A5A-9045-8276DD2B2BC3
Additional ap_float Functions
The ap_float data type also provides the following additional functions:
Function | Description |
---|---|
Getters and Setters | |
ap_float::get_exponent ap_float::set_exponent |
Gets/sets the exponent value of the ap_float variable. |
ap_float::get_mantissa ap_float::set_mantissa |
Gets/sets the mantissa value of the ap_float variable. |
ap_float::get_sign ap_float::set_sign |
Gets/sets the sign bit of the ap_float variable. |
Special Constants | |
ap_float<e,m>::nan() | Assigns the ap_float variable a value of NaN. |
ap_float<e,m>::pos_inf() | Assigns the ap_float variable a value of +∞. |
ap_float<e,m>::neg_inf() | Assigns the ap_float variable a value of −∞. |
Value Queries | |
ap_float::is_nan() | Returns true if the value of the ap_float variable is NaN. |
ap_float::is_inf() | Returns true if the value of the ap_float variable is ±∞. |
ap_float::is_zero() | Returns true if the value of the ap_float variable is zero. |
Special Functions | |
ap_float::next_after(next_val) | Returns the next representable value towards next_val. |
Parent topic: Declare the ap_float Data Type