Visible to Intel only — GUID: zpq1560291911826
Ixiasoft
1. Device Configuration User Guide: Agilex™ 5 FPGAs and SoCs
2. Agilex™ 5 Configuration Details
3. Agilex™ 5 Configuration Schemes
4. Including the Reset Release Intel® FPGA IP in Your Design
5. Remote System Update (RSU)
6. Agilex™ 5 Configuration Features
7. Agilex™ 5 Debugging Guide
8. Document Revision History for the Device Configuration User Guide: Agilex™ 5 FPGAs and SoCs
2.1. Agilex™ 5 Configuration Timing Diagram
2.2. Configuration Flow Diagram
2.3. Device Response to Configuration and Reset Events
2.4. Additional Clock Requirements for HPS and GTS Transceivers
2.5. Agilex™ 5 Configuration Pins
2.6. Configuration Clocks
2.7. Agilex™ 5 Configuration Time Estimation
2.8. Generating Compressed .sof File
3.1.1. Avalon® -ST Configuration Scheme Hardware Components and File Types
3.1.2. Enabling Avalon-ST Device Configuration
3.1.3. The AVST_READY Signal
3.1.4. RBF Configuration File Format
3.1.5. Avalon-ST Single-Device Configuration
3.1.6. Debugging Guidelines for the Avalon® -ST Configuration Scheme
3.1.7. IP for Use with the Avalon® -ST Configuration Scheme: Parallel Flash Loader II Intel® FPGA IP (PFL II)
3.1.7.1. Functional Description
3.1.7.2. Designing with the Parallel Flash Loader II Intel® FPGA IP for Avalon-ST Single Device Configuration
3.1.7.3. Generating the Parallel Flash Loader II Intel® FPGA IP
3.1.7.4. Constraining the Parallel Flash Loader II Intel® FPGA IP
3.1.7.5. Using the Parallel Flash Loader II Intel® FPGA IP
3.1.7.6. Supported Flash Memory Devices
3.1.7.3.1. Controlling Avalon-ST Configuration with Parallel Flash Loader II Intel® FPGA IP
3.1.7.3.2. Mapping Parallel Flash Loader II Intel® FPGA IP and Flash Address
3.1.7.3.3. Creating a Single Parallel Flash Loader II Intel® FPGA IP for Programming and Configuration
3.1.7.3.4. Creating Separate Parallel Flash Loader II Intel® FPGA IP Functions
3.1.7.4.1. Parallel Flash Loader II Intel® FPGA IP Recommended Design Constraints to FPGA Avalon-ST Pins
3.1.7.4.2. Parallel Flash Loader II Intel® FPGA IP Recommended Design Constraints for Using QSPI Flash
3.1.7.4.3. Parallel Flash Loader II Intel® FPGA IP Recommended Design Constraints for using CFI Flash
3.1.7.4.4. Parallel Flash Loader II Intel® FPGA IP Recommended Constraints for Other Input Pins
3.1.7.4.5. Parallel Flash Loader II Intel® FPGA IP Recommended Constraints for Other Output Pins
3.2.1. AS Configuration Scheme Hardware Components and File Types
3.2.2. AS Single-Device Configuration
3.2.3. AS Using Multiple Serial Flash Devices
3.2.4. AS Configuration Timing Parameters
3.2.5. Skew Tolerance Guidelines
3.2.6. Programming Serial Flash Devices
3.2.7. Serial Flash Memory Layout
3.2.8. AS_CLK
3.2.9. Active Serial Configuration Software Settings
3.2.10. Quartus® Prime Programming Steps
3.2.11. Debugging Guidelines for the AS Configuration Scheme
5.1. Remote System Update Functional Description
5.2. Guidelines for Performing Remote System Update Functions for Non-HPS
5.3. Commands and Responses
5.4. Quad SPI Flash Layout
5.5. Generating Remote System Update Image Files Using the Programming File Generator
5.6. Remote System Update from FPGA Core Example
5.6.1. Prerequisites
5.6.2. Creating Initial Flash Image Containing Bitstreams for Factory Image and One Application Image
5.6.3. Programming Flash Memory with the Initial Remote System Update Image
5.6.4. Reconfiguring the Device with an Application or Factory Image
5.6.5. Adding an Application Image
5.6.6. Removing an Application Image
7.1. Configuration Debugging Checklist
7.2. Agilex™ 5 Configuration Architecture Overview
7.3. Understanding Configuration Status Using quartus_pgm command
7.4. Configuration File Format Differences
7.5. Understanding SEUs
7.6. Reading the Unique 64-Bit CHIP ID
7.7. Understanding and Troubleshooting Configuration Pin Behavior
7.8. Configuration Debugger Tool
7.9. CRAM Integrity Check Feature
Visible to Intel only — GUID: zpq1560291911826
Ixiasoft
5.1.1. RSU Glossary
Term | Meaning |
---|---|
Firmware | Firmware that runs on SDM. Implements many functions including the functions listed here:
|
Decision firmware | Firmware to identify and load the highest priority image. Previous versions of this user guide refer to decision firmware as static firmware. Starting in version 19.1 of the Quartus® Prime software, you can use RSU to update this firmware. |
Decision firmware data | Decision firmware data structure containing the following information:
|
Configuration pointer block (CPB) | A list of application image addresses in order of priority. When you add an image address to this block, that image becomes the highest priority. |
Sub-partition table (SPT) | Data structure to facilitate the management of the flash storage. |
Application image | Configuration bitstream that implements your design. This image includes the SDM firmware. |
Factory image | The backup application image that the RSU loads when all attempts to load an application image fail. The factory image should provide enough functionality for the device to recover when all application images are corrupt. Once the factory image loads, you can program new application images to replace the failing images. The SDM loads the factory image in the following circumstances:
The configuration system treats the factory image in the same way as it does an application image.
|
Initial RSU image | Contains the factory image, the application images, the decision firmware, and the associated RSU data structures. |
Factory update image | An image that updates the following RSU-related items in flash:
|