Visible to Intel only — GUID: kjm1685525394071
Ixiasoft
1. About the Drive-on-Chip Design Example for Intel Agilex® 7 Devices
2. Features of the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3. Getting Started with the Drive-on-Chip Design Example for Intel Agilex 7 Devices
4. Rebuilding the Drive-on-Chip Design Example for Intel Agilex 7 Devices
5. About the Scaling of Feedback Signals
6. Motor Control Software
7. Functional Description of the Drive-on-Chip Design Example for Intel Agilex 7 Devices
8. Signals
9. Registers
10. Design Security Recommendations
11. Document Revision History for AN 994: Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.1. Software Requirements for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.2. Hardware Requirements for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.3. Downloading and Installing the Design
3.4. Setting Up your Development Board for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.5. Configuring the FPGA Hardware for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.6. Programming the Nios V/g Software to the Device for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.7. Debugging and Monitoring the Drive-on-Chip Design Example for Intel Agilex 7 Devices with Python GUI
3.7.1. GUI Control Parameters Pane for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.7.2. GUI Main Panes for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.7.3. Tuning the PI Controller Gains
3.7.4. Controlling the Speed and Position Demonstrations
3.7.5. Monitoring Performance
7.3.6.1. DSP Builder for Intel FPGAs Model for the Drive-on-Chip Designs
7.3.6.2. Avalon Memory-Mapped Interface
7.3.6.3. About DSP Builder for Intel FPGAs
7.3.6.4. DSP Builder for Intel FPGAs Folding
7.3.6.5. DSP Builder for Intel FPGAs Design Guidelines
7.3.6.6. Generating VHDL for the DSP Builder Models for the Drive-on-Chip Designs
Visible to Intel only — GUID: kjm1685525394071
Ixiasoft
7.1. NiosV/g Processor Subsystem
The Drive-on-Chip Design Example NiosV/g processor subsystem offers a fully functional processor system with debugging capabilities:
The NiosV/g processor subsystem comprises the following Platform Designer components:
- NiosV/g soft processor.
- JTAG master.
- IRQ management.
- JTAG UART.
- Timers and performance counters
The ISR uses the memory blocks for code and data to ensure fast predictable execution time for the motor control algorithm.
The NiosV/g subsystem uses the JTAG master and debug memories to allow real-time interactions between GUI and the processor.