Visible to Intel only — GUID: hzr1468320681814
Ixiasoft
1. About the Drive-on-Chip Design Example for Intel Agilex® 7 Devices
2. Features of the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3. Getting Started with the Drive-on-Chip Design Example for Intel Agilex 7 Devices
4. Rebuilding the Drive-on-Chip Design Example for Intel Agilex 7 Devices
5. About the Scaling of Feedback Signals
6. Motor Control Software
7. Functional Description of the Drive-on-Chip Design Example for Intel Agilex 7 Devices
8. Signals
9. Registers
10. Design Security Recommendations
11. Document Revision History for AN 994: Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.1. Software Requirements for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.2. Hardware Requirements for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.3. Downloading and Installing the Design
3.4. Setting Up your Development Board for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.5. Configuring the FPGA Hardware for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.6. Programming the Nios V/g Software to the Device for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.7. Debugging and Monitoring the Drive-on-Chip Design Example for Intel Agilex 7 Devices with Python GUI
3.7.1. GUI Control Parameters Pane for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.7.2. GUI Main Panes for the Drive-on-Chip Design Example for Intel Agilex 7 Devices
3.7.3. Tuning the PI Controller Gains
3.7.4. Controlling the Speed and Position Demonstrations
3.7.5. Monitoring Performance
7.3.6.1. DSP Builder for Intel FPGAs Model for the Drive-on-Chip Designs
7.3.6.2. Avalon Memory-Mapped Interface
7.3.6.3. About DSP Builder for Intel FPGAs
7.3.6.4. DSP Builder for Intel FPGAs Folding
7.3.6.5. DSP Builder for Intel FPGAs Design Guidelines
7.3.6.6. Generating VHDL for the DSP Builder Models for the Drive-on-Chip Designs
Visible to Intel only — GUID: hzr1468320681814
Ixiasoft
4.1. Generating the Platform Designer System
After making any changes in the Platform Designer project for the Drive-On-Chip Design Example, generate the system.
- In Platform Designer click File > Save.
- Click Generate HDL….
- Click Generate.
- Click Close.
- If your changes result in new exported connections you can view the Platform Designer component template by clicking Generate > Show Instantiation Template….
Add new ports to the Platform Designer component instantiation in the top level RTL of the project <project variant>.v.
- Close Platform Designer.
After making a change to the Platform Designer system you must:
- Regenerate the Nios V/g board support package (BSP) with new BSP settings file and rebuild the software.
- Compile the hardware