Visible to Intel only — GUID: sam1403482555329
Ixiasoft
1. Stratix® 10 High-Speed LVDS I/O Overview
2. Stratix® 10 High-Speed LVDS I/O Architecture and Features
3. Stratix 10 High-Speed LVDS I/O Design Considerations
4. Stratix® 10 High-Speed LVDS I/O Implementation Guides
5. LVDS SERDES Intel® FPGA IP References
6. Stratix® 10 High-Speed LVDS I/O User Guide Archives
7. Document Revision History for the Stratix® 10 High-Speed LVDS I/O User Guide
3.1. PLLs and Clocking for Stratix® 10 Devices
3.2. Source-Synchronous Timing Budget
3.3. Guideline: LVDS SERDES IP Core Instantiation
3.4. Guideline: LVDS SERDES Pin Pairs for Soft-CDR Mode
3.5. Guideline: LVDS Transmitters and Receivers in the Same I/O Bank
3.6. Guideline: LVDS SERDES Limitation for Stratix® 10 GX 400, SX 400, and TX 400
3.1.1. Clocking Differential Transmitters
3.1.2. Clocking Differential Receivers
3.1.3. Guideline: LVDS Reference Clock Source
3.1.4. Guideline: Use PLLs in Integer PLL Mode for LVDS
3.1.5. Guideline: Use High-Speed Clock from PLL to Clock LVDS SERDES Only
3.1.6. Guideline: Pin Placement for Differential Channels
3.1.7. LVDS Interface with External PLL Mode
Visible to Intel only — GUID: sam1403482555329
Ixiasoft
3.2.2. Differential I/O Bit Position
Data synchronization is necessary for successful data transmission at high frequencies.
Figure 28. Bit-Order and Word Boundary for One Differential Channel
This figure shows the data bit orientation for a channel operation and is based on the following conditions:
- The serialization factor is equal to the clock multiplication factor.
- The phase alignment uses edge alignment.
- The operation is implemented in hard SERDES.
For other serialization factors, use the Quartus® Prime software tools to find the bit position within the word.