Visible to Intel only — GUID: GUID-29241CDB-8BB1-4EE2-B8CA-7378C7CB595D
Visible to Intel only — GUID: GUID-29241CDB-8BB1-4EE2-B8CA-7378C7CB595D
v?Sinpi
Computes the sine of vector elements multiplied by π.
Syntax
call vssinpi (n, a, y)
call vssinpii(n, a, inca, y, incy)
call vmssinpi (n, a, y, mode)
call vmssinpii(n, a, inca, y, incy, mode)
call vdsinpi (n, a, y)
call vdsinpii(n, a, inca, y, incy)
call vmdsinpi (n, a, y, mode)
call vmdsinpii(n, a, inca, y, incy, mode)
Include Files
- mkl_vml.f90
Input Parameters
Name |
Type |
Description |
---|---|---|
n |
INTEGER |
Specifies the number of elements to be calculated. |
a |
REAL for vssinpi REAL for vmssinpi DOUBLE PRECISION for vdsinpi DOUBLE PRECISION for vmdsinpi |
Pointer to the array containing the input vector a. |
inca, incy |
INTEGER, INTENT(IN) |
Specifies increments for the elements of a and y. |
mode |
INTEGER (KIND=8) |
Overrides the global VM mode setting for this function call. See vmlSetMode for possible values and their description. |
Output Parameters
Name |
Type |
Description |
---|---|---|
y |
REAL for vssinpi REAL for vmssinpi DOUBLE PRECISION for vdsinpi DOUBLE PRECISION for vmdsinpi |
Pointer to an array containing the output vector y. |
Description
The v?Sinpi function computes the sine of vector elements multiplied by π. For an argument x, the function computes sin(π*x).
Argument | Result | VM Error Status | Exception |
---|---|---|---|
+0 | +0 | ||
-0 | -0 | ||
+n, positive integer | +0 | ||
-n, negative integer | -0 | ||
±∞ | QNAN | VML_STATUS_ERRDOM | INVALID |
QNAN | QNAN | ||
SNAN | QNAN | INVALID |
Application Notes
If arguments abs(ai) ≤ 222 for single precision or abs(ai) ≤ 251 for double precision, they belong to the fast computational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.