Visible to Intel only — GUID: GUID-09C206B9-23DD-49C8-9931-846AC43546CD
Visible to Intel only — GUID: GUID-09C206B9-23DD-49C8-9931-846AC43546CD
?hbgvx
Computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian positive-definite eigenproblem with banded matrices.
Syntax
call chbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
call zhbgvx(jobz, range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q, ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)
call hbgvx(ab, bb, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,q] [,abstol] [,info])
Include Files
- mkl.fi, mkl_lapack.f90
Description
The routine computes selected eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-definite banded eigenproblem, of the form A*x = λ*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite. Eigenvalues and eigenvectors can be selected by specifying either all eigenvalues, a range of values or a range of indices for the desired eigenvalues.
Input Parameters
- jobz
-
CHARACTER*1. Must be 'N' or 'V'.
If jobz = 'N', then compute eigenvalues only.
If jobz = 'V', then compute eigenvalues and eigenvectors.
- range
-
CHARACTER*1. Must be 'A' or 'V' or 'I'.
If range = 'A', the routine computes all eigenvalues.
If range = 'V', the routine computes eigenvalues lambda(i) in the half-open interval:
vl< lambda(i)≤vu.
If range = 'I', the routine computes eigenvalues with indices il to iu.
- uplo
-
CHARACTER*1. Must be 'U' or 'L'.
If uplo = 'U', arrays ab and bb store the upper triangles of A and B;
If uplo = 'L', arrays ab and bb store the lower triangles of A and B.
- n
-
INTEGER. The order of the matrices A and B (n≥ 0).
- ka
-
INTEGER. The number of super- or sub-diagonals in A
(ka≥ 0).
- kb
-
INTEGER. The number of super- or sub-diagonals in B (kb≥ 0).
- ab, bb, work
-
COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:
ab(ldab,*) is an array containing either upper or lower triangular part of the Hermitian matrix A (as specified by uplo) in band storage format.
The second dimension of the array ab must be at least max(1, n).
bb(ldbb,*) is an array containing either upper or lower triangular part of the Hermitian matrix B (as specified by uplo) in band storage format.
The second dimension of the array bb must be at least max(1, n).
work(*) is a workspace array, size at least max(1, n).
- ldab
-
INTEGER. The leading dimension of the array ab; must be at least ka+1.
- ldbb
-
INTEGER. The leading dimension of the array bb; must be at least kb+1.
- vl, vu
-
REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
If range = 'V', the lower and upper bounds of the interval to be searched for eigenvalues.
Constraint: vl< vu.
If range = 'A' or 'I', vl and vu are not referenced.
- il, iu
-
INTEGER.
If range = 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.
Constraint: 1 ≤il≤iu≤n, if n > 0; il=1 and iu=0
if n = 0.
If range = 'A' or 'V', il and iu are not referenced.
- abstol
-
REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
The absolute error tolerance for the eigenvalues. See Application Notes for more information.
- ldz
-
INTEGER. The leading dimension of the output array z; ldz≥ 1. If jobz = 'V', ldz≥ max(1, n).
- ldq
-
INTEGER. The leading dimension of the output array q; ldq≥ 1. If jobz = 'V', ldq≥ max(1, n).
- rwork
-
REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
Workspace array, size at least max(1, 7n).
- iwork
-
INTEGER.
Workspace array, size at least max(1, 5n).
Output Parameters
- ab
-
On exit, the contents of ab are overwritten.
- bb
-
On exit, contains the factor S from the split Cholesky factorization B = SH*S, as returned by pbstf/pbstf.
- m
-
INTEGER. The total number of eigenvalues found,
0 ≤m≤n. If range = 'A', m = n, and if range = 'I',
m = iu-il+1.
- w
-
REAL for chbgvx
DOUBLE PRECISION for zhbgvx.
Array w(*), size at least max(1, n).
If info = 0, contains the eigenvalues in ascending order.
- z, q
-
COMPLEX for chbgvx
DOUBLE COMPLEX for zhbgvx
Arrays:
z(ldz,*).
The second dimension of z must be at least max(1, n).
If jobz = 'V', then if info = 0, z contains the matrix Z of eigenvectors, with the i-th column of z holding the eigenvector associated with w(i). The eigenvectors are normalized so that ZH*B*Z = I.
If jobz = 'N', then z is not referenced.
q(ldq,*).
The second dimension of q must be at least max(1, n).
If jobz = 'V', then q contains the n-by-n matrix used in the reduction of Ax = λBx to standard form, that is, Cx = λx and consequently C to tridiagonal form.
If jobz = 'N', then q is not referenced.
- ifail
-
INTEGER.
Array, size at least max(1, n).
If jobz = 'V', then if info = 0, the first m elements of ifail are zero; if info > 0, the ifail contains the indices of the eigenvectors that failed to converge.
If jobz = 'N', then ifail is not referenced.
- info
-
INTEGER.
If info = 0, the execution is successful.
If info = -i, the i-th argument had an illegal value.
If info > 0, and
if i≤n, the algorithm failed to converge, and i off-diagonal elements of an intermediate tridiagonal did not converge to zero;
if info = n + i, for 1 ≤i≤n, then pbstf/pbstf returned info = i and B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.
LAPACK 95 Interface Notes
Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see LAPACK 95 Interface Conventions.
Specific details for the routine hbgvx interface are the following:
- ab
-
Holds the array A of size (ka+1,n).
- bb
-
Holds the array B of size (kb+1,n).
- w
-
Holds the vector with the number of elements n.
- z
-
Holds the matrix Z of size (n, n).
- ifail
-
Holds the vector with the number of elements n.
- q
-
Holds the matrix Q of size (n, n).
- uplo
-
Must be 'U' or 'L'. The default value is 'U'.
- vl
-
Default value for this element is vl = -HUGE(vl).
- vu
-
Default value for this element is vu = HUGE(vl).
- il
-
Default value for this argument is il = 1.
- iu
-
Default value for this argument is iu = n.
- abstol
-
Default value for this element is abstol = 0.0_WP.
- jobz
-
Restored based on the presence of the argument z as follows:
jobz = 'V', if z is present,
jobz = 'N', if z is omitted.
Note that there will be an error condition if ifail or q is present and z is omitted.
- range
-
Restored based on the presence of arguments vl, vu, il, iu as follows:
range = 'V', if one of or both vl and vu are present,
range = 'I', if one of or both il and iu are present,
range = 'A', if none of vl, vu, il, iu is present,
Note that there will be an error condition if one of or both vl and vu are present and at the same time one of or both il and iu are present.
Application Notes
An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ε*max(|a|,|b|), where ε is the machine precision.
If abstol is less than or equal to zero, then ε*||T||1 will be used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.
If this routine returns with info > 0, indicating that some eigenvectors did not converge, try setting abstol to 2*?lamch('S').