Developer Reference for Intel® oneAPI Math Kernel Library for Fortran

ID 766686
Date 12/16/2022
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

v?Asinh

Computes inverse hyperbolic sine of vector elements.

Syntax

call vsasinh( n, a, y )

call vsasinhi(n, a, inca, y, incy)

call vmsasinh( n, a, y, mode )

call vmsasinhi(n, a, inca, y, incy, mode)

call vdasinh( n, a, y )

call vdasinhi(n, a, inca, y, incy)

call vmdasinh( n, a, y, mode )

call vmdasinhi(n, a, inca, y, incy, mode)

call vcasinh( n, a, y )

call vcasinhi(n, a, inca, y, incy)

call vmcasinh( n, a, y, mode )

call vmcasinhi(n, a, inca, y, incy, mode)

call vzasinh( n, a, y )

call vzasinhi(n, a, inca, y, incy)

call vmzasinh( n, a, y, mode )

call vmzasinhi(n, a, inca, y, incy, mode)

Include Files
  • mkl_vml.f90
Input Parameters

Name

Type

Description

n

INTEGER, INTENT(IN)

Specifies the number of elements to be calculated.

a

DOUBLE PRECISION for vdasinh, vmdasinh

COMPLEX for vcasinh, vmcasinh

DOUBLE COMPLEX for vzasinh, vmzasinh

REAL, INTENT(IN) for vsasinh, vmsasinh

DOUBLE PRECISION, INTENT(IN) for vdasinh, vmdasinh

COMPLEX, INTENT(IN) for vcasinh, vmcasinh

DOUBLE COMPLEX, INTENT(IN) for vzasinh, vmzasinh

Array that specifies the input vector a.

inca, incy

INTEGER, INTENT(IN)

Specifies increments for the elements of a and y.

mode

INTEGER(KIND=8), INTENT(IN)

Overrides global VM mode setting for this function call. See vmlSetMode for possible values and their description.

Output Parameters

Name

Type

Description

y

DOUBLE PRECISION for vdasinh, vmdasinh

COMPLEX for vcasinh, vmcasinh

DOUBLE COMPLEX for vzasinh, vmzasinh

REAL, INTENT(OUT) for vsasinh, vmsasinh

DOUBLE PRECISION, INTENT(OUT) for vdasinh, vmdasinh

COMPLEX, INTENT(OUT) for vcasinh, vmcasinh

DOUBLE COMPLEX, INTENT(OUT) for vzasinh, vmzasinh

Array that specifies the output vector y.

Description

The v?Asinh function computes inverse hyperbolic sine of vector elements.

Special Values for Real Function v?Asinh(x)
Argument Result Exception
+0 +0  
-0 -0  
+ +  
- -  
QNAN QNAN  
SNAN QNAN INVALID

See Special Value Notations for the conventions used in the table below.

Special Values for Complex Function v?Asinh(z)

RE(z)

i·IM(z)

-

 

-X

 

-0

 

+0

 

+X

 

+

 

NAN

 

+i· -+i·π/4 -+i·π/2 ++i·π/2 ++i·π/2 ++i·π/2 ++i·π/4 ++i·QNAN
+i·Y -+i·0         ++i·0

QNAN+i·QNAN

+i·0 ++i·0   +0+i·0 +0+i·0   ++i·0

QNAN+i·QNAN

-i·0 --i·0   -0-i·0 +0-i·0   +-i·0

QNAN-i·QNAN

-i·Y --i·0         +-i·0

QNAN+i·QNAN

-i· --i·π/4 --i·π/2 --i·π/2 +-i·π/2 +-i·π/2 +-i·π/4 ++i·QNAN
+i·NAN -+i·QNAN

QNAN+i·QNAN

QNAN+i·QNAN

QNAN+i·QNAN

QNAN+i·QNAN

++i·QNAN

QNAN+i·QNAN

Notes:

  • raises INVALID exception when real or imaginary part of the argument is SNAN

  • Asinh(CONJ(z))=CONJ(Asinh(z))

  • Asinh(-z)=-Asinh(z).