Developer Reference for Intel® oneAPI Math Kernel Library for Fortran

ID 766686
Date 12/16/2022
Public

A newer version of this document is available. Customers should click here to go to the newest version.

Document Table of Contents

p?larzb

Applies a block reflector or its transpose/conjugate-transpose as returned by p?tzrzf to a general matrix.

Syntax

call pslarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc, descc, work)

call pdlarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc, descc, work)

call pclarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc, descc, work)

call pzlarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc, descc, work)

Description

The p?larzbroutine applies a real/complex block reflector Q or its transpose QT (conjugate transpose QH for complex flavors) to a real/complex distributed m-by-n matrix sub(C) = C(ic:ic+m-1, jc:jc+n-1) from the left or the right.

Q is a product of k elementary reflectors as returned by p?tzrzf.

Currently, only storev = 'R' and direct = 'B' are supported.

Input Parameters
side

(global) CHARACTER.

if side = 'L': apply Q or QT (QH for complex flavors) from the Left;

if side = 'R': apply Q or QT (QH for complex flavors) from the Right.

trans

(global) CHARACTER.

if trans = 'N': No transpose, apply Q;

If trans='T': Transpose, apply QT (real flavors);

If trans='C': Conjugate transpose, apply QH (complex flavors).

direct

(global) CHARACTER.

Indicates how H is formed from a product of elementary reflectors.

if direct = 'F': H = H(1)*H(2)*...*H(k) - forward (not supported) ;

if direct = 'B': H = H(k)*...*H(2)*H(1) - backward.

storev

(global) CHARACTER.

Indicates how the vectors that define the elementary reflectors are stored:

if storev = 'C': columnwise (not supported ).

if storev = 'R': rowwise.

m

(global) INTEGER.

The number of rows in the distributed submatrix sub(C). (m 0).

n

(global) INTEGER.

The number of columns in the distributed submatrix sub(C). (n 0).

k

(global) INTEGER.

The order of the matrix T. (= the number of elementary reflectors whose product defines the block reflector).

l

(global) INTEGER.

The columns of the distributed submatrix sub(A) containing the meaningful part of the Householder reflectors.

If side = 'L', m l 0,

if side = 'R', nl 0.

v

(local).

REAL for pslarzb

DOUBLE PRECISION for pdlarzb

COMPLEX for pclarzb

COMPLEX*16 for pzlarzb.

Pointer into the local memory to an array of size (lld_v, LOCc(jv+m-1)) if side = 'L', (lld_v, LOCc(jv+m-1)) if side = 'R'.

It contains the local pieces of the distributed vectors V representing the Householder transformation as returned by p?tzrzf.

lld_v LOCr(iv+k-1).

iv, jv

(global) INTEGER.

The row and column indices in the global matrix V indicating the first row and the first column of the submatrix sub(V), respectively.

descv

(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix V.

t

(local)

REAL for pslarzb

DOUBLE PRECISION for pdlarzb

COMPLEX for pclarzb

COMPLEX*16 for pzlarzb.

Array of size mb_vby mb_v.

The lower triangular matrix T in the representation of the block reflector.

c

(local).

REAL for pslarfb

DOUBLE PRECISION for pdlarfb

COMPLEX for pclarfb

COMPLEX*16 for pzlarfb.

Pointer into the local memory to an array of size (lld_c, LOCc(jc+n-1)).

On entry, the m-by-n distributed matrix sub(C).

ic, jc

(global) INTEGER.

The row and column indices in the global matrix C indicating the first row and the first column of the submatrix sub(C), respectively.

descc

(global and local) INTEGER array of size dlen_. The array descriptor for the distributed matrix C.

work

(local).

REAL for pslarzb

DOUBLE PRECISION for pdlarzb

COMPLEX for pclarzb

COMPLEX*16 for pzlarzb.

Array of size lwork.

If storev = 'C' ,
  if side = 'L' ,
    lwork(nqc0 + mpc0)* k
  else if side = 'R' ,
    lwork  (nqc0 + max(npv0 + numroc(numroc(n+icoffc, nb_v, 0, 0, npcol),
           nb_v, 0, 0, lcmq), mpc0))* k
  end if
else if storev = 'R' ,
  if side = 'L' ,
    lwork (mpc0 + max(mqv0 + numroc(numroc(m+iroffc, mb_v, 0, 0, nprow),
             mb_v, 0, 0, lcmp), nqc0))* k
  else if side = 'R' ,
    lwork (mpc0 + nqc0) * k
  end if
  end if.

Here lcmq = lcm/npcol with lcm = iclm(nprow, npcol),

iroffv = mod(iv-1, mb_v), icoffv = mod( jv-1, nb_v),

ivrow = indxg2p(iv, mb_v, myrow, rsrc_v, nprow),

ivcol = indxg2p(jv, nb_v, mycol, csrc_v, npcol),

mqv0 = numroc(m+icoffv, nb_v, mycol, ivcol, npcol),

npv0 = numroc(n+iroffv, mb_v, myrow, ivrow, nprow),

iroffc = mod(ic-1, mb_c ), icoffc= mod( jc-1, nb_c),

icrow= indxg2p(ic, mb_c, myrow, rsrc_c, nprow),

iccol= indxg2p(jc, nb_c, mycol, csrc_c, npcol),

mpc0 = numroc(m+iroffc, mb_c, myrow, icrow, nprow),

npc0 = numroc(n+icoffc, mb_c, myrow, icrow, nprow),

nqc0 = numroc(n+icoffc, nb_c, mycol, iccol, npcol),

ilcm, indxg2p, and numroc are ScaLAPACK tool functions; myrow, mycol, nprow, and npcol can be determined by calling the subroutine blacs_gridinfo.

Output Parameters
c

(local).

On exit, sub(C) is overwritten by the Q*sub(C), or Q'*sub(C), or sub(C)*Q, or sub(C)*Q', where Q' is the transpose (conjugate transpose) of Q.

See Also